{"title":"端口-哈密尔顿描述子系统的结构保持线性二次高斯平衡截断法","authors":"Tobias Breiten, Philipp Schulze","doi":"10.1016/j.laa.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new balancing-based structure-preserving model reduction technique for linear port-Hamiltonian descriptor systems. The proposed method relies on a modification of a set of two dual generalized algebraic Riccati equations that arise in the context of linear quadratic Gaussian balanced truncation for differential algebraic systems. We derive an a priori error bound with respect to a right coprime factorization of the underlying transfer function thereby allowing for an estimate with respect to the gap metric. We further theoretically and numerically analyze the influence of the Hamiltonian and a change thereof, respectively. With regard to this change of the Hamiltonian, we provide a novel procedure that is based on a recently introduced Kalman–Yakubovich–Popov inequality for descriptor systems. Numerical examples demonstrate how the quality of reduced-order models can significantly be improved by first computing an extremal solution to this inequality.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"704 ","pages":"Pages 146-191"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-preserving linear quadratic Gaussian balanced truncation for port-Hamiltonian descriptor systems\",\"authors\":\"Tobias Breiten, Philipp Schulze\",\"doi\":\"10.1016/j.laa.2024.10.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a new balancing-based structure-preserving model reduction technique for linear port-Hamiltonian descriptor systems. The proposed method relies on a modification of a set of two dual generalized algebraic Riccati equations that arise in the context of linear quadratic Gaussian balanced truncation for differential algebraic systems. We derive an a priori error bound with respect to a right coprime factorization of the underlying transfer function thereby allowing for an estimate with respect to the gap metric. We further theoretically and numerically analyze the influence of the Hamiltonian and a change thereof, respectively. With regard to this change of the Hamiltonian, we provide a novel procedure that is based on a recently introduced Kalman–Yakubovich–Popov inequality for descriptor systems. Numerical examples demonstrate how the quality of reduced-order models can significantly be improved by first computing an extremal solution to this inequality.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"704 \",\"pages\":\"Pages 146-191\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003938\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003938","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Structure-preserving linear quadratic Gaussian balanced truncation for port-Hamiltonian descriptor systems
We present a new balancing-based structure-preserving model reduction technique for linear port-Hamiltonian descriptor systems. The proposed method relies on a modification of a set of two dual generalized algebraic Riccati equations that arise in the context of linear quadratic Gaussian balanced truncation for differential algebraic systems. We derive an a priori error bound with respect to a right coprime factorization of the underlying transfer function thereby allowing for an estimate with respect to the gap metric. We further theoretically and numerically analyze the influence of the Hamiltonian and a change thereof, respectively. With regard to this change of the Hamiltonian, we provide a novel procedure that is based on a recently introduced Kalman–Yakubovich–Popov inequality for descriptor systems. Numerical examples demonstrate how the quality of reduced-order models can significantly be improved by first computing an extremal solution to this inequality.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.