用于门式起重机斗抓斗异常运动检测的随机误差几何模型

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-10-24 DOI:10.1016/j.engappai.2024.109481
Baichen Yu , Xiao Wang , Hansheng Wang
{"title":"用于门式起重机斗抓斗异常运动检测的随机误差几何模型","authors":"Baichen Yu ,&nbsp;Xiao Wang ,&nbsp;Hansheng Wang","doi":"10.1016/j.engappai.2024.109481","DOIUrl":null,"url":null,"abstract":"<div><div>Abnormal swing angle detection of bucket grabs is crucial for efficient harbor operations. In this study, we develop a practically convenient swing angle detection method for crane operation, requiring only a single standard surveillance camera at the fly-jib head, without the need for sophisticated sensors or markers on the payload. Specifically, our algorithm takes the video images from the camera as input. Next, a fine-tuned ‘the fifth version of the You Only Look Once algorithm’ (YOLOv5) model is used to automatically detect the position of the bucket grab on the image plane. Subsequently, a novel geometric model is constructed, which takes the pixel position of the bucket grab, the steel rope length provided by the Programmable Logic Controller (PLC) system, and the optical lens information of the camera into consideration. The key parameters of this geometric model are statistically estimated by a novel iterative algorithm. Once the key parameters are estimated, the algorithm can automatically detect swing angles from video streams. Being analytically simple, the computation of our algorithm is fast, as it takes about 0.01 s to process one single image generated by the surveillance camera. Therefore, we are able to obtain an accurate and fast estimation of the swing angle of an operating crane in real-time applications. Simulation studies are conducted to validate the model and algorithm. Real video examples from Qingdao Seaport under various weather conditions are analyzed to demonstrate its practical performance.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometric model with stochastic error for abnormal motion detection of portal crane bucket grab\",\"authors\":\"Baichen Yu ,&nbsp;Xiao Wang ,&nbsp;Hansheng Wang\",\"doi\":\"10.1016/j.engappai.2024.109481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Abnormal swing angle detection of bucket grabs is crucial for efficient harbor operations. In this study, we develop a practically convenient swing angle detection method for crane operation, requiring only a single standard surveillance camera at the fly-jib head, without the need for sophisticated sensors or markers on the payload. Specifically, our algorithm takes the video images from the camera as input. Next, a fine-tuned ‘the fifth version of the You Only Look Once algorithm’ (YOLOv5) model is used to automatically detect the position of the bucket grab on the image plane. Subsequently, a novel geometric model is constructed, which takes the pixel position of the bucket grab, the steel rope length provided by the Programmable Logic Controller (PLC) system, and the optical lens information of the camera into consideration. The key parameters of this geometric model are statistically estimated by a novel iterative algorithm. Once the key parameters are estimated, the algorithm can automatically detect swing angles from video streams. Being analytically simple, the computation of our algorithm is fast, as it takes about 0.01 s to process one single image generated by the surveillance camera. Therefore, we are able to obtain an accurate and fast estimation of the swing angle of an operating crane in real-time applications. Simulation studies are conducted to validate the model and algorithm. Real video examples from Qingdao Seaport under various weather conditions are analyzed to demonstrate its practical performance.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016397\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016397","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

斗式抓斗的异常摆角检测对于高效的港口作业至关重要。在本研究中,我们开发了一种方便实用的起重机操作摆角检测方法,只需在飞臂头部安装一个标准监控摄像头,而无需在有效载荷上安装复杂的传感器或标记。具体来说,我们的算法将摄像头的视频图像作为输入。然后,使用经过微调的 "第五版只看一次算法"(YOLOv5)模型来自动检测图像平面上抓斗的位置。随后,构建了一个新颖的几何模型,该模型将抓斗的像素位置、可编程逻辑控制器(PLC)系统提供的钢绳长度以及摄像机的光学镜头信息考虑在内。该几何模型的关键参数通过一种新颖的迭代算法进行统计估算。一旦估算出关键参数,该算法就能自动检测视频流中的摆动角度。由于分析简单,我们的算法计算速度很快,处理监控摄像头生成的单张图像大约需要 0.01 秒。因此,我们能够在实时应用中准确、快速地估计运行中起重机的摆动角度。为验证模型和算法,我们进行了仿真研究。分析了青岛港在各种天气条件下的真实视频示例,以证明其实用性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A geometric model with stochastic error for abnormal motion detection of portal crane bucket grab
Abnormal swing angle detection of bucket grabs is crucial for efficient harbor operations. In this study, we develop a practically convenient swing angle detection method for crane operation, requiring only a single standard surveillance camera at the fly-jib head, without the need for sophisticated sensors or markers on the payload. Specifically, our algorithm takes the video images from the camera as input. Next, a fine-tuned ‘the fifth version of the You Only Look Once algorithm’ (YOLOv5) model is used to automatically detect the position of the bucket grab on the image plane. Subsequently, a novel geometric model is constructed, which takes the pixel position of the bucket grab, the steel rope length provided by the Programmable Logic Controller (PLC) system, and the optical lens information of the camera into consideration. The key parameters of this geometric model are statistically estimated by a novel iterative algorithm. Once the key parameters are estimated, the algorithm can automatically detect swing angles from video streams. Being analytically simple, the computation of our algorithm is fast, as it takes about 0.01 s to process one single image generated by the surveillance camera. Therefore, we are able to obtain an accurate and fast estimation of the swing angle of an operating crane in real-time applications. Simulation studies are conducted to validate the model and algorithm. Real video examples from Qingdao Seaport under various weather conditions are analyzed to demonstrate its practical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1