利用自适应模式分解、注意力机制和深度学习的新型焦化产品价格综合预测方法

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-10-24 DOI:10.1016/j.engappai.2024.109504
Xuhui Zhu , Chenggong Ma , Hao Lei , Pingfan Xia , Zhanglin Peng
{"title":"利用自适应模式分解、注意力机制和深度学习的新型焦化产品价格综合预测方法","authors":"Xuhui Zhu ,&nbsp;Chenggong Ma ,&nbsp;Hao Lei ,&nbsp;Pingfan Xia ,&nbsp;Zhanglin Peng","doi":"10.1016/j.engappai.2024.109504","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of coking product prices is crucial for enhancing production efficiency, cost optimization, and profit maximization in smart coking facilities. To address the volatility caused by nonlinear factors such as raw material costs, substitutes, macroeconomic indicators, sudden events, policy changes, and market behaviors, we propose a novel integrated prediction method for coking product price prediction. This method combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for signal decomposition, Bidirectional Encoder Representations from Transformers (BERT) for natural language processing, attention mechanisms (AT) to weigh feature importance, and an ensemble of Bidirectional Gated Recurrent Unit, Bidirectional Long Short-Term Memory, and Gated Recurrent Unit, abbreviated BBG, for robust feature extraction. We design a feature selection strategy to avoid data leakage and improve the predictive ability of the model, and describe a method to maintain textual data information integrity when combining data from different sources. Experimental results on coke and methanol datasets show that our approach retains multi-source text richness improves predictive capability, and outperforms other state-of-the-art methods, providing an effective tool for developing smart coke plants.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel integrated prediction method using adaptive mode decomposition, attention mechanism and deep learning for coking products prices\",\"authors\":\"Xuhui Zhu ,&nbsp;Chenggong Ma ,&nbsp;Hao Lei ,&nbsp;Pingfan Xia ,&nbsp;Zhanglin Peng\",\"doi\":\"10.1016/j.engappai.2024.109504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate prediction of coking product prices is crucial for enhancing production efficiency, cost optimization, and profit maximization in smart coking facilities. To address the volatility caused by nonlinear factors such as raw material costs, substitutes, macroeconomic indicators, sudden events, policy changes, and market behaviors, we propose a novel integrated prediction method for coking product price prediction. This method combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for signal decomposition, Bidirectional Encoder Representations from Transformers (BERT) for natural language processing, attention mechanisms (AT) to weigh feature importance, and an ensemble of Bidirectional Gated Recurrent Unit, Bidirectional Long Short-Term Memory, and Gated Recurrent Unit, abbreviated BBG, for robust feature extraction. We design a feature selection strategy to avoid data leakage and improve the predictive ability of the model, and describe a method to maintain textual data information integrity when combining data from different sources. Experimental results on coke and methanol datasets show that our approach retains multi-source text richness improves predictive capability, and outperforms other state-of-the-art methods, providing an effective tool for developing smart coke plants.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016622\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016622","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

准确预测焦化产品价格对于提高智能焦化设施的生产效率、成本优化和利润最大化至关重要。针对原材料成本、替代品、宏观经济指标、突发事件、政策变化和市场行为等非线性因素造成的波动,我们提出了一种新的焦化产品价格预测综合预测方法。该方法结合了用于信号分解的自适应噪声完全集合经验模式分解(CEEMDAN)、用于自然语言处理的变压器双向编码器表征(BERT)、用于权衡特征重要性的注意机制(AT),以及用于鲁棒特征提取的双向门控递归单元、双向长短时记忆和门控递归单元(简称 BBG)集合。我们设计了一种特征选择策略,以避免数据泄漏并提高模型的预测能力,还介绍了一种在组合不同来源的数据时保持文本数据信息完整性的方法。焦炭和甲醇数据集的实验结果表明,我们的方法保留了多源文本的丰富性,提高了预测能力,并优于其他最先进的方法,为开发智能焦化厂提供了有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel integrated prediction method using adaptive mode decomposition, attention mechanism and deep learning for coking products prices
Accurate prediction of coking product prices is crucial for enhancing production efficiency, cost optimization, and profit maximization in smart coking facilities. To address the volatility caused by nonlinear factors such as raw material costs, substitutes, macroeconomic indicators, sudden events, policy changes, and market behaviors, we propose a novel integrated prediction method for coking product price prediction. This method combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for signal decomposition, Bidirectional Encoder Representations from Transformers (BERT) for natural language processing, attention mechanisms (AT) to weigh feature importance, and an ensemble of Bidirectional Gated Recurrent Unit, Bidirectional Long Short-Term Memory, and Gated Recurrent Unit, abbreviated BBG, for robust feature extraction. We design a feature selection strategy to avoid data leakage and improve the predictive ability of the model, and describe a method to maintain textual data information integrity when combining data from different sources. Experimental results on coke and methanol datasets show that our approach retains multi-source text richness improves predictive capability, and outperforms other state-of-the-art methods, providing an effective tool for developing smart coke plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1