Xuhui Zhu , Chenggong Ma , Hao Lei , Pingfan Xia , Zhanglin Peng
{"title":"利用自适应模式分解、注意力机制和深度学习的新型焦化产品价格综合预测方法","authors":"Xuhui Zhu , Chenggong Ma , Hao Lei , Pingfan Xia , Zhanglin Peng","doi":"10.1016/j.engappai.2024.109504","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of coking product prices is crucial for enhancing production efficiency, cost optimization, and profit maximization in smart coking facilities. To address the volatility caused by nonlinear factors such as raw material costs, substitutes, macroeconomic indicators, sudden events, policy changes, and market behaviors, we propose a novel integrated prediction method for coking product price prediction. This method combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for signal decomposition, Bidirectional Encoder Representations from Transformers (BERT) for natural language processing, attention mechanisms (AT) to weigh feature importance, and an ensemble of Bidirectional Gated Recurrent Unit, Bidirectional Long Short-Term Memory, and Gated Recurrent Unit, abbreviated BBG, for robust feature extraction. We design a feature selection strategy to avoid data leakage and improve the predictive ability of the model, and describe a method to maintain textual data information integrity when combining data from different sources. Experimental results on coke and methanol datasets show that our approach retains multi-source text richness improves predictive capability, and outperforms other state-of-the-art methods, providing an effective tool for developing smart coke plants.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel integrated prediction method using adaptive mode decomposition, attention mechanism and deep learning for coking products prices\",\"authors\":\"Xuhui Zhu , Chenggong Ma , Hao Lei , Pingfan Xia , Zhanglin Peng\",\"doi\":\"10.1016/j.engappai.2024.109504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate prediction of coking product prices is crucial for enhancing production efficiency, cost optimization, and profit maximization in smart coking facilities. To address the volatility caused by nonlinear factors such as raw material costs, substitutes, macroeconomic indicators, sudden events, policy changes, and market behaviors, we propose a novel integrated prediction method for coking product price prediction. This method combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for signal decomposition, Bidirectional Encoder Representations from Transformers (BERT) for natural language processing, attention mechanisms (AT) to weigh feature importance, and an ensemble of Bidirectional Gated Recurrent Unit, Bidirectional Long Short-Term Memory, and Gated Recurrent Unit, abbreviated BBG, for robust feature extraction. We design a feature selection strategy to avoid data leakage and improve the predictive ability of the model, and describe a method to maintain textual data information integrity when combining data from different sources. Experimental results on coke and methanol datasets show that our approach retains multi-source text richness improves predictive capability, and outperforms other state-of-the-art methods, providing an effective tool for developing smart coke plants.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016622\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016622","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A novel integrated prediction method using adaptive mode decomposition, attention mechanism and deep learning for coking products prices
Accurate prediction of coking product prices is crucial for enhancing production efficiency, cost optimization, and profit maximization in smart coking facilities. To address the volatility caused by nonlinear factors such as raw material costs, substitutes, macroeconomic indicators, sudden events, policy changes, and market behaviors, we propose a novel integrated prediction method for coking product price prediction. This method combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for signal decomposition, Bidirectional Encoder Representations from Transformers (BERT) for natural language processing, attention mechanisms (AT) to weigh feature importance, and an ensemble of Bidirectional Gated Recurrent Unit, Bidirectional Long Short-Term Memory, and Gated Recurrent Unit, abbreviated BBG, for robust feature extraction. We design a feature selection strategy to avoid data leakage and improve the predictive ability of the model, and describe a method to maintain textual data information integrity when combining data from different sources. Experimental results on coke and methanol datasets show that our approach retains multi-source text richness improves predictive capability, and outperforms other state-of-the-art methods, providing an effective tool for developing smart coke plants.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.