Lili Zhang , Kang Yang , Yucheng Han , Jing Li , Wei Wei , Hongxin Tan , Pei Yu , Ke Zhang , Xudong Yang
{"title":"TSD-DETR:用于自动驾驶远距离感知的轻量级交通标志检测实时检测变换器","authors":"Lili Zhang , Kang Yang , Yucheng Han , Jing Li , Wei Wei , Hongxin Tan , Pei Yu , Ke Zhang , Xudong Yang","doi":"10.1016/j.engappai.2024.109536","DOIUrl":null,"url":null,"abstract":"<div><div>The key to accurate perception and efficient decision making of autonomous driving is the long-range detection of traffic signs. Long-range detection of traffic signs has the problems of small traffic sign size and complex background. In order to solve these problems, this paper proposes a lightweight model for traffic sign detection based on real-time detection transformer (TSD-DETR). Firstly, the feature extraction module is constructed using multiple types of convolutional modules. The model extracts multi-scale features of different levels to enhance feature extraction ability. Then, small object detection module and detection head are designed to extract and detect shallow features. It can improve the detection of small traffic signs. Finally, Efficient Multi-Scale Attention is introduced to adjust the channel weights. It aggregates the output features of three parallel branches interactively. TSD-DETR achieves a mean average precision (mAp) of 96.8% on Tsinghua-Tencent 100K dataset. It is improved by 2.5% compared with real-time detection transformer. In small object detection, mAp improved by 9%. TSD-DETR achieves 99.4% mAp on the Changsha University of Science and Technology Chinese Traffic Sign Detection Benchmark dataset, with an improvement of 0.6%. The experimental results show that TSD-DETR reduces the number of parameters by 9.06M by optimizing the model structure. On the premise of ensuring the real-time performance of the model, the detection accuracy of the model is improved greatly. The results of ablation experiments show that the feature extraction module and small object detection module proposed in this paper are conducive to improving the detection accuracy.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TSD-DETR: A lightweight real-time detection transformer of traffic sign detection for long-range perception of autonomous driving\",\"authors\":\"Lili Zhang , Kang Yang , Yucheng Han , Jing Li , Wei Wei , Hongxin Tan , Pei Yu , Ke Zhang , Xudong Yang\",\"doi\":\"10.1016/j.engappai.2024.109536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The key to accurate perception and efficient decision making of autonomous driving is the long-range detection of traffic signs. Long-range detection of traffic signs has the problems of small traffic sign size and complex background. In order to solve these problems, this paper proposes a lightweight model for traffic sign detection based on real-time detection transformer (TSD-DETR). Firstly, the feature extraction module is constructed using multiple types of convolutional modules. The model extracts multi-scale features of different levels to enhance feature extraction ability. Then, small object detection module and detection head are designed to extract and detect shallow features. It can improve the detection of small traffic signs. Finally, Efficient Multi-Scale Attention is introduced to adjust the channel weights. It aggregates the output features of three parallel branches interactively. TSD-DETR achieves a mean average precision (mAp) of 96.8% on Tsinghua-Tencent 100K dataset. It is improved by 2.5% compared with real-time detection transformer. In small object detection, mAp improved by 9%. TSD-DETR achieves 99.4% mAp on the Changsha University of Science and Technology Chinese Traffic Sign Detection Benchmark dataset, with an improvement of 0.6%. The experimental results show that TSD-DETR reduces the number of parameters by 9.06M by optimizing the model structure. On the premise of ensuring the real-time performance of the model, the detection accuracy of the model is improved greatly. The results of ablation experiments show that the feature extraction module and small object detection module proposed in this paper are conducive to improving the detection accuracy.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016944\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016944","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
TSD-DETR: A lightweight real-time detection transformer of traffic sign detection for long-range perception of autonomous driving
The key to accurate perception and efficient decision making of autonomous driving is the long-range detection of traffic signs. Long-range detection of traffic signs has the problems of small traffic sign size and complex background. In order to solve these problems, this paper proposes a lightweight model for traffic sign detection based on real-time detection transformer (TSD-DETR). Firstly, the feature extraction module is constructed using multiple types of convolutional modules. The model extracts multi-scale features of different levels to enhance feature extraction ability. Then, small object detection module and detection head are designed to extract and detect shallow features. It can improve the detection of small traffic signs. Finally, Efficient Multi-Scale Attention is introduced to adjust the channel weights. It aggregates the output features of three parallel branches interactively. TSD-DETR achieves a mean average precision (mAp) of 96.8% on Tsinghua-Tencent 100K dataset. It is improved by 2.5% compared with real-time detection transformer. In small object detection, mAp improved by 9%. TSD-DETR achieves 99.4% mAp on the Changsha University of Science and Technology Chinese Traffic Sign Detection Benchmark dataset, with an improvement of 0.6%. The experimental results show that TSD-DETR reduces the number of parameters by 9.06M by optimizing the model structure. On the premise of ensuring the real-time performance of the model, the detection accuracy of the model is improved greatly. The results of ablation experiments show that the feature extraction module and small object detection module proposed in this paper are conducive to improving the detection accuracy.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.