Haiyang Zhang , Lianglin Xiong , Hongxing Chang , Jinde Cao , Zhang Yi
{"title":"随机欺骗攻击下具有加性时变延迟的马尔可夫 CVNN 的离散事件触发安全控制","authors":"Haiyang Zhang , Lianglin Xiong , Hongxing Chang , Jinde Cao , Zhang Yi","doi":"10.1016/j.jfranklin.2024.107324","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the security stabilization problem for a class of Complex-valued Neural Networks (CVNNs) with Markov Jump Parameters (MJPs) and Additive Time-varying Delays (ATVDs) under Random Deception Attacks (RDAs). Different from the existing literature, the instant and strength of RDAs considered in this paper is both random, which is more in line with the real situation. Secondly, a general Lyapunov–Krasovskii Functional (LKF) contains more information about MJPs and ATVDs is constructed, and a new Complex-valued Reciprocally Convex Inequality (CVRCI) containing more free matrices and ATVDs parameters is proposed, which play a key role in reducing the conservativeness of security stabilization criteria. Thirdly, a Discrete Event-triggered Mechanism (DETM) is introduced to mitigate the transmission burden of communication networks, in which the triggering condition of DETM mainly relies on the current sampled state and the last triggered state. Then, by combining with the LKF, CVRCI, DETM, and other analysis techniques, some less conservative security stabilization criteria for the underlying systems are provided in terms of Linear Matrix Inequalities (LMIs). Finally, the effectiveness of our results are verified by two numerical examples and a practical example.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 17","pages":"Article 107324"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete event-triggered security control for Markovian CVNNs with additive time-varying delays under random deception attacks\",\"authors\":\"Haiyang Zhang , Lianglin Xiong , Hongxing Chang , Jinde Cao , Zhang Yi\",\"doi\":\"10.1016/j.jfranklin.2024.107324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the security stabilization problem for a class of Complex-valued Neural Networks (CVNNs) with Markov Jump Parameters (MJPs) and Additive Time-varying Delays (ATVDs) under Random Deception Attacks (RDAs). Different from the existing literature, the instant and strength of RDAs considered in this paper is both random, which is more in line with the real situation. Secondly, a general Lyapunov–Krasovskii Functional (LKF) contains more information about MJPs and ATVDs is constructed, and a new Complex-valued Reciprocally Convex Inequality (CVRCI) containing more free matrices and ATVDs parameters is proposed, which play a key role in reducing the conservativeness of security stabilization criteria. Thirdly, a Discrete Event-triggered Mechanism (DETM) is introduced to mitigate the transmission burden of communication networks, in which the triggering condition of DETM mainly relies on the current sampled state and the last triggered state. Then, by combining with the LKF, CVRCI, DETM, and other analysis techniques, some less conservative security stabilization criteria for the underlying systems are provided in terms of Linear Matrix Inequalities (LMIs). Finally, the effectiveness of our results are verified by two numerical examples and a practical example.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"361 17\",\"pages\":\"Article 107324\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224007452\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224007452","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Discrete event-triggered security control for Markovian CVNNs with additive time-varying delays under random deception attacks
This paper is concerned with the security stabilization problem for a class of Complex-valued Neural Networks (CVNNs) with Markov Jump Parameters (MJPs) and Additive Time-varying Delays (ATVDs) under Random Deception Attacks (RDAs). Different from the existing literature, the instant and strength of RDAs considered in this paper is both random, which is more in line with the real situation. Secondly, a general Lyapunov–Krasovskii Functional (LKF) contains more information about MJPs and ATVDs is constructed, and a new Complex-valued Reciprocally Convex Inequality (CVRCI) containing more free matrices and ATVDs parameters is proposed, which play a key role in reducing the conservativeness of security stabilization criteria. Thirdly, a Discrete Event-triggered Mechanism (DETM) is introduced to mitigate the transmission burden of communication networks, in which the triggering condition of DETM mainly relies on the current sampled state and the last triggered state. Then, by combining with the LKF, CVRCI, DETM, and other analysis techniques, some less conservative security stabilization criteria for the underlying systems are provided in terms of Linear Matrix Inequalities (LMIs). Finally, the effectiveness of our results are verified by two numerical examples and a practical example.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.