利用基于二氧化碳的管式反应器开发用于酸碱处理预测的物理引导神经网络框架

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-10-20 DOI:10.1016/j.engappai.2024.109500
Chanin Panjapornpon , Patcharapol Chinchalongporn , Santi Bardeeniz , Kulpavee Jitapunkul , Mohamed Azlan Hussain , Thanatip Satjeenphong
{"title":"利用基于二氧化碳的管式反应器开发用于酸碱处理预测的物理引导神经网络框架","authors":"Chanin Panjapornpon ,&nbsp;Patcharapol Chinchalongporn ,&nbsp;Santi Bardeeniz ,&nbsp;Kulpavee Jitapunkul ,&nbsp;Mohamed Azlan Hussain ,&nbsp;Thanatip Satjeenphong","doi":"10.1016/j.engappai.2024.109500","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate acid-base treatment prediction is necessary to achieve the required yield, given the inherent complexity, high nonlinearity, and restricted availability of data samples; to address this challenge, a data-driven approach was developed. However, the technique is constrained by the need for sufficient data to construct an accurate model and lacks both process insight and physical consistency. Therefore, this study introduces a physics-guided neural network model for acid-base treatment prediction in a dynamic tubular reactor using the fundamental physical intermediate variables obtained through the derivation process of the reaction schematic. By integrating batch experimental data, which provides key intermediate variables such as residence time and hydroxide ion concentration, the model addresses the challenge of high nonlinearity and limited data availability. The result shows that the physics-guided potential of a hydrogen predictor had outstanding performance in terms of prediction accuracy (greatest coefficient of determination value of 0.9381). The proposed model demonstrated an average improvement of 24.92% in pH prediction accuracy compared to traditional models without physical guidance, with a maximum improvement of up to 64.95% under limited data conditions. Moreover, downsampling tests revealed that the proposed model maintained robust performance with minimal accuracy reduction even when data was limited without overfitting implication.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of physics-guided neural network framework for acid-base treatment prediction using carbon dioxide-based tubular reactor\",\"authors\":\"Chanin Panjapornpon ,&nbsp;Patcharapol Chinchalongporn ,&nbsp;Santi Bardeeniz ,&nbsp;Kulpavee Jitapunkul ,&nbsp;Mohamed Azlan Hussain ,&nbsp;Thanatip Satjeenphong\",\"doi\":\"10.1016/j.engappai.2024.109500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate acid-base treatment prediction is necessary to achieve the required yield, given the inherent complexity, high nonlinearity, and restricted availability of data samples; to address this challenge, a data-driven approach was developed. However, the technique is constrained by the need for sufficient data to construct an accurate model and lacks both process insight and physical consistency. Therefore, this study introduces a physics-guided neural network model for acid-base treatment prediction in a dynamic tubular reactor using the fundamental physical intermediate variables obtained through the derivation process of the reaction schematic. By integrating batch experimental data, which provides key intermediate variables such as residence time and hydroxide ion concentration, the model addresses the challenge of high nonlinearity and limited data availability. The result shows that the physics-guided potential of a hydrogen predictor had outstanding performance in terms of prediction accuracy (greatest coefficient of determination value of 0.9381). The proposed model demonstrated an average improvement of 24.92% in pH prediction accuracy compared to traditional models without physical guidance, with a maximum improvement of up to 64.95% under limited data conditions. Moreover, downsampling tests revealed that the proposed model maintained robust performance with minimal accuracy reduction even when data was limited without overfitting implication.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016580\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016580","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

鉴于酸碱处理本身的复杂性、高度非线性和数据样本的有限性,要达到所需的产量,就必须进行准确的酸碱处理预测;为应对这一挑战,我们开发了一种数据驱动方法。然而,由于需要足够的数据来构建准确的模型,该技术受到了限制,并且缺乏对工艺的深入了解和物理一致性。因此,本研究引入了一个物理引导的神经网络模型,利用通过反应原理图推导过程获得的基本物理中间变量,对动态管式反应器中的酸碱处理进行预测。通过整合批量实验数据(这些数据提供了关键的中间变量,如停留时间和氢氧根离子浓度),该模型解决了高非线性和数据可用性有限的难题。结果表明,氢气预测器的物理引导势能在预测准确性方面表现出色(最大决定系数值为 0.9381)。与没有物理指导的传统模型相比,所提出的模型在 pH 预测准确率方面平均提高了 24.92%,在数据有限的条件下,最高提高了 64.95%。此外,下采样测试表明,即使在数据有限的情况下,所提出的模型也能保持稳健的性能,准确率降低幅度极小,没有过拟合的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of physics-guided neural network framework for acid-base treatment prediction using carbon dioxide-based tubular reactor
Accurate acid-base treatment prediction is necessary to achieve the required yield, given the inherent complexity, high nonlinearity, and restricted availability of data samples; to address this challenge, a data-driven approach was developed. However, the technique is constrained by the need for sufficient data to construct an accurate model and lacks both process insight and physical consistency. Therefore, this study introduces a physics-guided neural network model for acid-base treatment prediction in a dynamic tubular reactor using the fundamental physical intermediate variables obtained through the derivation process of the reaction schematic. By integrating batch experimental data, which provides key intermediate variables such as residence time and hydroxide ion concentration, the model addresses the challenge of high nonlinearity and limited data availability. The result shows that the physics-guided potential of a hydrogen predictor had outstanding performance in terms of prediction accuracy (greatest coefficient of determination value of 0.9381). The proposed model demonstrated an average improvement of 24.92% in pH prediction accuracy compared to traditional models without physical guidance, with a maximum improvement of up to 64.95% under limited data conditions. Moreover, downsampling tests revealed that the proposed model maintained robust performance with minimal accuracy reduction even when data was limited without overfitting implication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1