S. Ma Lu , S. Zainali , T.E.K. Zidane , T. Hörndahl , S. Tekie , A. Khosravi , M. Guezgouz , B. Stridh , A. Avelin , P.E. Campana
{"title":"垂直农业光伏系统对瑞典大麦(Hordeum vulgare L.)作物产量和养分含量的影响数据","authors":"S. Ma Lu , S. Zainali , T.E.K. Zidane , T. Hörndahl , S. Tekie , A. Khosravi , M. Guezgouz , B. Stridh , A. Avelin , P.E. Campana","doi":"10.1016/j.dib.2024.110990","DOIUrl":null,"url":null,"abstract":"<div><div>Agrivoltaic systems emerge as a promising solution to the ongoing conflict between allocating agricultural land for food production and establishing solar parks. This field experiment, conducted during the spring and summer seasons of 2023, aims to showcase barley production in a vertical agrivoltaic system compared to open-field reference conditions at Kärrbo Prästgård, near Västerås, Sweden. The dataset presented in this article encompasses both barley kernel and straw yields, kernel crude protein levels, starch content in kernels and thousand kernel weight. All collected data underwent analysis of variance (ANOVA) with Tukey pairwise comparison when possible, using dedicated software RStudio 4.3.2. This dataset article illustrates the effects of the vertical agrivoltaic design system on barley productivity. Interested researchers can benefit from this data to better comprehend barley yield under this specific agrivoltaic design and conduct further analyses and comparisons with yields from different locations or design configurations. The experimental data holds the potential to foster collaborations and advance research in agrivoltaic systems, providing a valuable resource for anyone interested in the subject. It was observed that the mean barley yield in all the different areas of the vertical agrivoltaic system were higher than the one in the control area. Additionally, weather and solar irradiance data collected during the growing season are provided in the repository for further usage.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data on the effects of a vertical agrivoltaic system on crop yield and nutrient content of barley (Hordeum vulgare L.) in Sweden\",\"authors\":\"S. Ma Lu , S. Zainali , T.E.K. Zidane , T. Hörndahl , S. Tekie , A. Khosravi , M. Guezgouz , B. Stridh , A. Avelin , P.E. Campana\",\"doi\":\"10.1016/j.dib.2024.110990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Agrivoltaic systems emerge as a promising solution to the ongoing conflict between allocating agricultural land for food production and establishing solar parks. This field experiment, conducted during the spring and summer seasons of 2023, aims to showcase barley production in a vertical agrivoltaic system compared to open-field reference conditions at Kärrbo Prästgård, near Västerås, Sweden. The dataset presented in this article encompasses both barley kernel and straw yields, kernel crude protein levels, starch content in kernels and thousand kernel weight. All collected data underwent analysis of variance (ANOVA) with Tukey pairwise comparison when possible, using dedicated software RStudio 4.3.2. This dataset article illustrates the effects of the vertical agrivoltaic design system on barley productivity. Interested researchers can benefit from this data to better comprehend barley yield under this specific agrivoltaic design and conduct further analyses and comparisons with yields from different locations or design configurations. The experimental data holds the potential to foster collaborations and advance research in agrivoltaic systems, providing a valuable resource for anyone interested in the subject. It was observed that the mean barley yield in all the different areas of the vertical agrivoltaic system were higher than the one in the control area. Additionally, weather and solar irradiance data collected during the growing season are provided in the repository for further usage.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340924009521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924009521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Data on the effects of a vertical agrivoltaic system on crop yield and nutrient content of barley (Hordeum vulgare L.) in Sweden
Agrivoltaic systems emerge as a promising solution to the ongoing conflict between allocating agricultural land for food production and establishing solar parks. This field experiment, conducted during the spring and summer seasons of 2023, aims to showcase barley production in a vertical agrivoltaic system compared to open-field reference conditions at Kärrbo Prästgård, near Västerås, Sweden. The dataset presented in this article encompasses both barley kernel and straw yields, kernel crude protein levels, starch content in kernels and thousand kernel weight. All collected data underwent analysis of variance (ANOVA) with Tukey pairwise comparison when possible, using dedicated software RStudio 4.3.2. This dataset article illustrates the effects of the vertical agrivoltaic design system on barley productivity. Interested researchers can benefit from this data to better comprehend barley yield under this specific agrivoltaic design and conduct further analyses and comparisons with yields from different locations or design configurations. The experimental data holds the potential to foster collaborations and advance research in agrivoltaic systems, providing a valuable resource for anyone interested in the subject. It was observed that the mean barley yield in all the different areas of the vertical agrivoltaic system were higher than the one in the control area. Additionally, weather and solar irradiance data collected during the growing season are provided in the repository for further usage.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.