{"title":"利用参考图像进行无文本扩散涂色,增强视觉保真度","authors":"Beomjo Kim, Kyung-Ah Sohn","doi":"10.1016/j.patrec.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel approach to subject-driven image generation that addresses the limitations of traditional text-to-image diffusion models. Our method generates images using reference images without relying on language-based prompts. We introduce a visual detail preserving module that captures intricate details and textures, addressing overfitting issues associated with limited training samples. The model's performance is further enhanced through a modified classifier-free guidance technique and feature concatenation, enabling the natural positioning and harmonization of subjects within diverse scenes. Quantitative assessments using CLIP, DINO and Quality scores (QS), along with a user study, demonstrate the superior quality of our generated images. Our work highlights the potential of pre-trained models and visual patch embeddings in subject-driven editing, balancing diversity and fidelity in image generation tasks. Our implementation is available at <span><span>https://github.com/8eomio/Subject-Inpainting</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 221-228"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text-free diffusion inpainting using reference images for enhanced visual fidelity\",\"authors\":\"Beomjo Kim, Kyung-Ah Sohn\",\"doi\":\"10.1016/j.patrec.2024.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel approach to subject-driven image generation that addresses the limitations of traditional text-to-image diffusion models. Our method generates images using reference images without relying on language-based prompts. We introduce a visual detail preserving module that captures intricate details and textures, addressing overfitting issues associated with limited training samples. The model's performance is further enhanced through a modified classifier-free guidance technique and feature concatenation, enabling the natural positioning and harmonization of subjects within diverse scenes. Quantitative assessments using CLIP, DINO and Quality scores (QS), along with a user study, demonstrate the superior quality of our generated images. Our work highlights the potential of pre-trained models and visual patch embeddings in subject-driven editing, balancing diversity and fidelity in image generation tasks. Our implementation is available at <span><span>https://github.com/8eomio/Subject-Inpainting</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 221-228\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002976\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002976","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Text-free diffusion inpainting using reference images for enhanced visual fidelity
This paper presents a novel approach to subject-driven image generation that addresses the limitations of traditional text-to-image diffusion models. Our method generates images using reference images without relying on language-based prompts. We introduce a visual detail preserving module that captures intricate details and textures, addressing overfitting issues associated with limited training samples. The model's performance is further enhanced through a modified classifier-free guidance technique and feature concatenation, enabling the natural positioning and harmonization of subjects within diverse scenes. Quantitative assessments using CLIP, DINO and Quality scores (QS), along with a user study, demonstrate the superior quality of our generated images. Our work highlights the potential of pre-trained models and visual patch embeddings in subject-driven editing, balancing diversity and fidelity in image generation tasks. Our implementation is available at https://github.com/8eomio/Subject-Inpainting.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.