Sung Jae Lee, Chaeyeong Yun, Su Jin Im, Kang Ryoung Park
{"title":"CNCAN:用于农作物和杂草超分辨率图像重建的对比度和正常通道注意力网络","authors":"Sung Jae Lee, Chaeyeong Yun, Su Jin Im, Kang Ryoung Park","doi":"10.1016/j.engappai.2024.109487","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous studies have been performed to apply camera vision technologies in robot-based agriculture and smart farms. In particular, to obtain high accuracy, it is essential to procure high-resolution (HR) images, which requires a high-performance camera. However, due to high costs it is difficult to widely apply the camera in agricultural robots. To overcome this limitation, we propose contrast and normal channel attention network (CNCAN) for super-resolution reconstruction (SR), which is the first research for the accurate semantic segmentation of crops and weeds even with low-resolution (LR) images captured by low-cost and LR camera. Attention block and activation function that considers high frequency and contrast information of images are used in CNCAN, and the residual connection method is applied to improve the learning stability.</div><div>As a result of experimenting with three open datasets, namely, Bonirob, rice seedling and weed, and crop/weed field image (CWFID) datasets, the mean intersection of union (MIOU) results of semantic segmentation for crops and weeds with SR images through CNCAN were 0.7685, 0.6346, and 0.6931 in the Bonirob, rice seedling and weed, and CWFID datasets, respectively, confirming higher accuracy than other state-of-the-art methods for SR.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNCAN: Contrast and normal channel attention network for super-resolution image reconstruction of crops and weeds\",\"authors\":\"Sung Jae Lee, Chaeyeong Yun, Su Jin Im, Kang Ryoung Park\",\"doi\":\"10.1016/j.engappai.2024.109487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Numerous studies have been performed to apply camera vision technologies in robot-based agriculture and smart farms. In particular, to obtain high accuracy, it is essential to procure high-resolution (HR) images, which requires a high-performance camera. However, due to high costs it is difficult to widely apply the camera in agricultural robots. To overcome this limitation, we propose contrast and normal channel attention network (CNCAN) for super-resolution reconstruction (SR), which is the first research for the accurate semantic segmentation of crops and weeds even with low-resolution (LR) images captured by low-cost and LR camera. Attention block and activation function that considers high frequency and contrast information of images are used in CNCAN, and the residual connection method is applied to improve the learning stability.</div><div>As a result of experimenting with three open datasets, namely, Bonirob, rice seedling and weed, and crop/weed field image (CWFID) datasets, the mean intersection of union (MIOU) results of semantic segmentation for crops and weeds with SR images through CNCAN were 0.7685, 0.6346, and 0.6931 in the Bonirob, rice seedling and weed, and CWFID datasets, respectively, confirming higher accuracy than other state-of-the-art methods for SR.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016452\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016452","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
在基于机器人的农业和智能农场中应用相机视觉技术的研究不胜枚举。特别是,要获得高精度,必须获得高分辨率(HR)图像,这就需要高性能相机。然而,由于成本高昂,相机很难广泛应用于农业机器人。为了克服这一限制,我们提出了用于超分辨率重建(SR)的对比度和正常通道注意网络(CNCAN),这是首次针对低成本和低分辨率相机拍摄的低分辨率(LR)图像对农作物和杂草进行精确语义分割的研究。CNCAN 采用了考虑图像高频和对比度信息的注意块和激活函数,并应用残差连接法提高了学习稳定性。通过对 Bonirob、水稻秧苗和杂草以及作物/杂草田图像(CWFID)三个开放数据集的实验,CNCAN 利用 SR 图像对作物和杂草进行语义分割的平均交集联合(MIOU)结果在 Bonirob、水稻秧苗和杂草以及 CWFID 数据集中分别为 0.7685、0.6346 和 0.6931,证实了比其他最先进的 SR 方法更高的精度。
CNCAN: Contrast and normal channel attention network for super-resolution image reconstruction of crops and weeds
Numerous studies have been performed to apply camera vision technologies in robot-based agriculture and smart farms. In particular, to obtain high accuracy, it is essential to procure high-resolution (HR) images, which requires a high-performance camera. However, due to high costs it is difficult to widely apply the camera in agricultural robots. To overcome this limitation, we propose contrast and normal channel attention network (CNCAN) for super-resolution reconstruction (SR), which is the first research for the accurate semantic segmentation of crops and weeds even with low-resolution (LR) images captured by low-cost and LR camera. Attention block and activation function that considers high frequency and contrast information of images are used in CNCAN, and the residual connection method is applied to improve the learning stability.
As a result of experimenting with three open datasets, namely, Bonirob, rice seedling and weed, and crop/weed field image (CWFID) datasets, the mean intersection of union (MIOU) results of semantic segmentation for crops and weeds with SR images through CNCAN were 0.7685, 0.6346, and 0.6931 in the Bonirob, rice seedling and weed, and CWFID datasets, respectively, confirming higher accuracy than other state-of-the-art methods for SR.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.