{"title":"乘法和求模算法对异步的容忍度","authors":"Arya Tanmay Gupta, Sandeep S Kulkarni","doi":"10.1016/j.tcs.2024.114914","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study some parallel processing algorithms for multiplication and modulo operations. We demonstrate that the state transitions that are formed under these algorithms satisfy lattice-linearity, where these algorithms induce a lattice among the global states. Lattice-linearity implies that these algorithms can be implemented in asynchronous environments, where the nodes are allowed to read old information from each other. It means that these algorithms are guaranteed to converge correctly without any synchronization overhead. These algorithms also exhibit snap-stabilizing properties, i.e., starting from an arbitrary state, the sequence of state transitions made by the system strictly follows its specification.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1024 ","pages":"Article 114914"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tolerance to asynchrony in algorithms for multiplication and modulo\",\"authors\":\"Arya Tanmay Gupta, Sandeep S Kulkarni\",\"doi\":\"10.1016/j.tcs.2024.114914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we study some parallel processing algorithms for multiplication and modulo operations. We demonstrate that the state transitions that are formed under these algorithms satisfy lattice-linearity, where these algorithms induce a lattice among the global states. Lattice-linearity implies that these algorithms can be implemented in asynchronous environments, where the nodes are allowed to read old information from each other. It means that these algorithms are guaranteed to converge correctly without any synchronization overhead. These algorithms also exhibit snap-stabilizing properties, i.e., starting from an arbitrary state, the sequence of state transitions made by the system strictly follows its specification.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1024 \",\"pages\":\"Article 114914\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005310\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005310","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Tolerance to asynchrony in algorithms for multiplication and modulo
In this article, we study some parallel processing algorithms for multiplication and modulo operations. We demonstrate that the state transitions that are formed under these algorithms satisfy lattice-linearity, where these algorithms induce a lattice among the global states. Lattice-linearity implies that these algorithms can be implemented in asynchronous environments, where the nodes are allowed to read old information from each other. It means that these algorithms are guaranteed to converge correctly without any synchronization overhead. These algorithms also exhibit snap-stabilizing properties, i.e., starting from an arbitrary state, the sequence of state transitions made by the system strictly follows its specification.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.