Thomas Howard, Shannon E. Ganley, Sanjana Maheshwari, Leah G. Dodson
{"title":"通过空腔环比光谱量化氰化氢的缓冲气冷却过程","authors":"Thomas Howard, Shannon E. Ganley, Sanjana Maheshwari, Leah G. Dodson","doi":"10.1016/j.jms.2024.111953","DOIUrl":null,"url":null,"abstract":"<div><div>We describe an instrument that uses continuous-wave (CW) cavity-ringdown spectroscopy to measure the translational and rotational temperature of buffer-gas cooled molecules and demonstrate its use on hydrogen cyanide. This instrument can access the near-infrared region around 1.5 μm—a rich spectral region that features the rotationally resolved first overtone of the C-H stretch for many astrophysically relevant molecules. Molecules are probed directly inside the buffer-gas cell, further enabling quantitative measurements of the effectiveness of this cooling technique.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buffer-gas cooling of hydrogen cyanide quantified by cavity-ringdown spectroscopy\",\"authors\":\"Thomas Howard, Shannon E. Ganley, Sanjana Maheshwari, Leah G. Dodson\",\"doi\":\"10.1016/j.jms.2024.111953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We describe an instrument that uses continuous-wave (CW) cavity-ringdown spectroscopy to measure the translational and rotational temperature of buffer-gas cooled molecules and demonstrate its use on hydrogen cyanide. This instrument can access the near-infrared region around 1.5 μm—a rich spectral region that features the rotationally resolved first overtone of the C-H stretch for many astrophysically relevant molecules. Molecules are probed directly inside the buffer-gas cell, further enabling quantitative measurements of the effectiveness of this cooling technique.</div></div>\",\"PeriodicalId\":16367,\"journal\":{\"name\":\"Journal of Molecular Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022285224000808\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285224000808","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Buffer-gas cooling of hydrogen cyanide quantified by cavity-ringdown spectroscopy
We describe an instrument that uses continuous-wave (CW) cavity-ringdown spectroscopy to measure the translational and rotational temperature of buffer-gas cooled molecules and demonstrate its use on hydrogen cyanide. This instrument can access the near-infrared region around 1.5 μm—a rich spectral region that features the rotationally resolved first overtone of the C-H stretch for many astrophysically relevant molecules. Molecules are probed directly inside the buffer-gas cell, further enabling quantitative measurements of the effectiveness of this cooling technique.
期刊介绍:
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.