{"title":"基于综合风险评估方法的地下救援路径规划","authors":"Li Zhou , Jinqiu Zhao , Binglei Xie , Yong Xu","doi":"10.1016/j.simpat.2024.103022","DOIUrl":null,"url":null,"abstract":"<div><div>Fire incidents in underground environments, such as subway stations and shopping malls, pose significant hazards due to restricted ventilation and confined spaces. These conditions complicate rescue operations, particularly given the unpredictable nature of fires. Effective integration of fire risk assessment into rescue path planning is essential for ensuring both safety and operational efficiency. However, fire risk is inherently complex, varying across both temporal and spatial dimensions, and accurate assessment depends on precise fire situation inference. Despite advancements in fire simulation technologies, inconsistencies in geometric structures between computational units limit seamless integration with path planning models. Consequently, many existing studies rely on simplistic and less reliable linear fire inference models, compromising the safety of rescue operations. This paper addresses these challenges by proposing an underground rescue path planning method based on a comprehensive fire risk assessment, aimed at enhancing both safety and operational efficiency. A fire risk assessment approach, driven by fire situation inference, is introduced, employing a novel grid-matching transformation to capture the spatio-temporal dynamics of fire conditions using high-precision simulation software. Additionally, an improved A* algorithm is developed for real-time rescue path optimization, minimizing path risk based on the results of the risk assessment. The proposed method is validated through a detailed case study, demonstrating its effectiveness and reliability.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"138 ","pages":"Article 103022"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underground rescue path planning based on a comprehensive risk assessment approach\",\"authors\":\"Li Zhou , Jinqiu Zhao , Binglei Xie , Yong Xu\",\"doi\":\"10.1016/j.simpat.2024.103022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fire incidents in underground environments, such as subway stations and shopping malls, pose significant hazards due to restricted ventilation and confined spaces. These conditions complicate rescue operations, particularly given the unpredictable nature of fires. Effective integration of fire risk assessment into rescue path planning is essential for ensuring both safety and operational efficiency. However, fire risk is inherently complex, varying across both temporal and spatial dimensions, and accurate assessment depends on precise fire situation inference. Despite advancements in fire simulation technologies, inconsistencies in geometric structures between computational units limit seamless integration with path planning models. Consequently, many existing studies rely on simplistic and less reliable linear fire inference models, compromising the safety of rescue operations. This paper addresses these challenges by proposing an underground rescue path planning method based on a comprehensive fire risk assessment, aimed at enhancing both safety and operational efficiency. A fire risk assessment approach, driven by fire situation inference, is introduced, employing a novel grid-matching transformation to capture the spatio-temporal dynamics of fire conditions using high-precision simulation software. Additionally, an improved A* algorithm is developed for real-time rescue path optimization, minimizing path risk based on the results of the risk assessment. The proposed method is validated through a detailed case study, demonstrating its effectiveness and reliability.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"138 \",\"pages\":\"Article 103022\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24001369\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001369","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Underground rescue path planning based on a comprehensive risk assessment approach
Fire incidents in underground environments, such as subway stations and shopping malls, pose significant hazards due to restricted ventilation and confined spaces. These conditions complicate rescue operations, particularly given the unpredictable nature of fires. Effective integration of fire risk assessment into rescue path planning is essential for ensuring both safety and operational efficiency. However, fire risk is inherently complex, varying across both temporal and spatial dimensions, and accurate assessment depends on precise fire situation inference. Despite advancements in fire simulation technologies, inconsistencies in geometric structures between computational units limit seamless integration with path planning models. Consequently, many existing studies rely on simplistic and less reliable linear fire inference models, compromising the safety of rescue operations. This paper addresses these challenges by proposing an underground rescue path planning method based on a comprehensive fire risk assessment, aimed at enhancing both safety and operational efficiency. A fire risk assessment approach, driven by fire situation inference, is introduced, employing a novel grid-matching transformation to capture the spatio-temporal dynamics of fire conditions using high-precision simulation software. Additionally, an improved A* algorithm is developed for real-time rescue path optimization, minimizing path risk based on the results of the risk assessment. The proposed method is validated through a detailed case study, demonstrating its effectiveness and reliability.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.