硅-磷系统的关键评估:富硅区的磷溶解度和磷蒸馏提炼

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Calphad-computer Coupling of Phase Diagrams and Thermochemistry Pub Date : 2024-10-28 DOI:10.1016/j.calphad.2024.102758
Simon Favre, Ioana Nuta, Guy Chichignoud, Evelyne Fischer, Christian Chatillon
{"title":"硅-磷系统的关键评估:富硅区的磷溶解度和磷蒸馏提炼","authors":"Simon Favre,&nbsp;Ioana Nuta,&nbsp;Guy Chichignoud,&nbsp;Evelyne Fischer,&nbsp;Christian Chatillon","doi":"10.1016/j.calphad.2024.102758","DOIUrl":null,"url":null,"abstract":"<div><div>The P-Si system has been studied due to its poisonous importance in silicon electronic devices for photovoltaic applications. Thermodynamic and phase diagram data of the Si-P system available in literature are critically evaluated for further optimization of thermodynamic properties in order to improve the thermodynamic description of this system, especially in the Si-rich region. After revising the solubility data of P in solid Si in the Si-rich region its upper limit is now evaluated at 1w% P (mole fraction X<sub>P</sub> ≈ 0.0095). With this controversial solubility limit resolved, current modelling of the liquid and solid phases is described more accurately. Distillation capacity of phosphorus by vaporization is then assessed for liquid and solid silicon on the basis of the determination of the infinite dilution activity coefficient of phosphorus in silicon - the Henry's coefficient - as well as numerous gaseous species existing in the Si-P binary system. The lack of original calorimetric data is highlighted in view to a further more reliable description of the complete Si-P system.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102758"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical assessment of the Si-P system: P solubility in the Si-rich region and refining by phosphorus distillation\",\"authors\":\"Simon Favre,&nbsp;Ioana Nuta,&nbsp;Guy Chichignoud,&nbsp;Evelyne Fischer,&nbsp;Christian Chatillon\",\"doi\":\"10.1016/j.calphad.2024.102758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The P-Si system has been studied due to its poisonous importance in silicon electronic devices for photovoltaic applications. Thermodynamic and phase diagram data of the Si-P system available in literature are critically evaluated for further optimization of thermodynamic properties in order to improve the thermodynamic description of this system, especially in the Si-rich region. After revising the solubility data of P in solid Si in the Si-rich region its upper limit is now evaluated at 1w% P (mole fraction X<sub>P</sub> ≈ 0.0095). With this controversial solubility limit resolved, current modelling of the liquid and solid phases is described more accurately. Distillation capacity of phosphorus by vaporization is then assessed for liquid and solid silicon on the basis of the determination of the infinite dilution activity coefficient of phosphorus in silicon - the Henry's coefficient - as well as numerous gaseous species existing in the Si-P binary system. The lack of original calorimetric data is highlighted in view to a further more reliable description of the complete Si-P system.</div></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":\"87 \",\"pages\":\"Article 102758\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591624001007\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624001007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于 P-Si 系统在光伏应用的硅电子设备中具有重要的毒害作用,因此对该系统进行了研究。为了进一步优化热力学特性,我们对文献中提供的硅-硅体系的热力学和相图数据进行了严格评估,以改进该体系的热力学描述,尤其是在富硅区域。在修订了固态硅中 P 在富硅区域的溶解度数据后,其上限现在被评估为 1w% P(分子分数 XP ≈ 0.0095)。解决了这一有争议的溶解度上限问题后,目前对液相和固相的建模描述就更加准确了。然后,在确定硅中磷的无限稀释活性系数(亨利系数)以及硅-磷二元体系中存在的众多气态物质的基础上,对液态和固态硅的磷蒸发蒸馏能力进行了评估。为了进一步更可靠地描述完整的硅-磷系统,强调了原始量热数据的缺乏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Critical assessment of the Si-P system: P solubility in the Si-rich region and refining by phosphorus distillation
The P-Si system has been studied due to its poisonous importance in silicon electronic devices for photovoltaic applications. Thermodynamic and phase diagram data of the Si-P system available in literature are critically evaluated for further optimization of thermodynamic properties in order to improve the thermodynamic description of this system, especially in the Si-rich region. After revising the solubility data of P in solid Si in the Si-rich region its upper limit is now evaluated at 1w% P (mole fraction XP ≈ 0.0095). With this controversial solubility limit resolved, current modelling of the liquid and solid phases is described more accurately. Distillation capacity of phosphorus by vaporization is then assessed for liquid and solid silicon on the basis of the determination of the infinite dilution activity coefficient of phosphorus in silicon - the Henry's coefficient - as well as numerous gaseous species existing in the Si-P binary system. The lack of original calorimetric data is highlighted in view to a further more reliable description of the complete Si-P system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
期刊最新文献
Exploration of high-ductility ternary refractory complex concentrated alloys using first-principles calculations and machine learning Interdiffusivity matrices and atomic mobilities in fcc Ni–Fe–Mo alloys: Experiment and modeling The Al2O3-SiO2-“V2O3” phase diagram at 1873 K Experimental investigation and thermodynamic calculation of the Al-Cr-Pd ternary system High temperature phase relations and structure determination of solid solutions in the ternary Nd-Dy-Cu system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1