采用平均停留时间策略的分数阶模糊系统的分数脉冲控制器设计及其在风能系统中的应用

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED Communications in Nonlinear Science and Numerical Simulation Pub Date : 2024-10-16 DOI:10.1016/j.cnsns.2024.108394
G. Narayanan , M. Syed Ali , Sangtae Ahn , Young Hoon Joo , Rajagopal Karthikeyan , Grienggrai Rajchakit
{"title":"采用平均停留时间策略的分数阶模糊系统的分数脉冲控制器设计及其在风能系统中的应用","authors":"G. Narayanan ,&nbsp;M. Syed Ali ,&nbsp;Sangtae Ahn ,&nbsp;Young Hoon Joo ,&nbsp;Rajagopal Karthikeyan ,&nbsp;Grienggrai Rajchakit","doi":"10.1016/j.cnsns.2024.108394","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the issue of adaptive impulsive control of a permanent magnet synchronous generator (PMSG)-based wind energy system (WES) with an average dwell-time strategy is investigated using a Takagi–Sugeno (T–S) fuzzy model described by fractional-order differential equations. A T–S fuzzy model is employed to describe the nonlinear fractional-order PMSG (FOPMSG) model, an average dwell time, an average impulsive condition, a Lyapunov function, and a less conservative algebraic inequality criterion that guarantees stabilization for the considered nonlinear system. First, the mathematical model of the FOPMSG in the <span><math><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></math></span> reference frame is transformed into a dimensionless chaotic system through affine transformation and time scale transformation. Then, the stabilization problem of the nonlinear chaotic FOPMSG model is considered to validate the proposed sufficient conditions, leading to the derivation of a new stability criterion for the FOPMSG model, instead of addressing the general problem to validate the proposed result. Subsequently, the desired control gains can be obtained to ensure the stabilization of the addressed closed-loop system. By combining adaptive and impulsive control, the model under consideration can be stabilized for any target dynamics. Finally, we demonstrate the efficiency and feasibility of the suggested approach through numerical simulations and comparative results.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108394"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional impulsive controller design of fractional-order fuzzy systems with average dwell-time strategy and its application to wind energy systems\",\"authors\":\"G. Narayanan ,&nbsp;M. Syed Ali ,&nbsp;Sangtae Ahn ,&nbsp;Young Hoon Joo ,&nbsp;Rajagopal Karthikeyan ,&nbsp;Grienggrai Rajchakit\",\"doi\":\"10.1016/j.cnsns.2024.108394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the issue of adaptive impulsive control of a permanent magnet synchronous generator (PMSG)-based wind energy system (WES) with an average dwell-time strategy is investigated using a Takagi–Sugeno (T–S) fuzzy model described by fractional-order differential equations. A T–S fuzzy model is employed to describe the nonlinear fractional-order PMSG (FOPMSG) model, an average dwell time, an average impulsive condition, a Lyapunov function, and a less conservative algebraic inequality criterion that guarantees stabilization for the considered nonlinear system. First, the mathematical model of the FOPMSG in the <span><math><mrow><mi>n</mi><mo>−</mo><mi>m</mi></mrow></math></span> reference frame is transformed into a dimensionless chaotic system through affine transformation and time scale transformation. Then, the stabilization problem of the nonlinear chaotic FOPMSG model is considered to validate the proposed sufficient conditions, leading to the derivation of a new stability criterion for the FOPMSG model, instead of addressing the general problem to validate the proposed result. Subsequently, the desired control gains can be obtained to ensure the stabilization of the addressed closed-loop system. By combining adaptive and impulsive control, the model under consideration can be stabilized for any target dynamics. Finally, we demonstrate the efficiency and feasibility of the suggested approach through numerical simulations and comparative results.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"140 \",\"pages\":\"Article 108394\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005793\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005793","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用分数阶微分方程描述的高木-菅野(Takagi-Sugeno,T-S)模糊模型,研究了采用平均停留时间策略对基于永磁同步发电机(PMSG)的风能系统(WES)进行自适应脉冲控制的问题。采用 T-S 模糊模型来描述非线性分数阶 PMSG(FOPMSG)模型、平均驻留时间、平均脉冲条件、Lyapunov 函数和较保守的代数不等式准则,以保证所考虑的非线性系统的稳定。首先,通过仿射变换和时标变换,将 n-m 参考框架下的 FOPMSG 数学模型转化为无量纲混沌系统。然后,考虑非线性混沌 FOPMSG 模型的稳定问题,以验证所提出的充分条件,从而推导出 FOPMSG 模型的新稳定准则,而不是解决一般问题来验证所提出的结果。随后,可以获得所需的控制增益,以确保所处理闭环系统的稳定。通过将自适应控制和脉冲控制相结合,所考虑的模型可以在任何目标动态下保持稳定。最后,我们通过数值模拟和比较结果证明了所建议方法的效率和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractional impulsive controller design of fractional-order fuzzy systems with average dwell-time strategy and its application to wind energy systems
In this study, the issue of adaptive impulsive control of a permanent magnet synchronous generator (PMSG)-based wind energy system (WES) with an average dwell-time strategy is investigated using a Takagi–Sugeno (T–S) fuzzy model described by fractional-order differential equations. A T–S fuzzy model is employed to describe the nonlinear fractional-order PMSG (FOPMSG) model, an average dwell time, an average impulsive condition, a Lyapunov function, and a less conservative algebraic inequality criterion that guarantees stabilization for the considered nonlinear system. First, the mathematical model of the FOPMSG in the nm reference frame is transformed into a dimensionless chaotic system through affine transformation and time scale transformation. Then, the stabilization problem of the nonlinear chaotic FOPMSG model is considered to validate the proposed sufficient conditions, leading to the derivation of a new stability criterion for the FOPMSG model, instead of addressing the general problem to validate the proposed result. Subsequently, the desired control gains can be obtained to ensure the stabilization of the addressed closed-loop system. By combining adaptive and impulsive control, the model under consideration can be stabilized for any target dynamics. Finally, we demonstrate the efficiency and feasibility of the suggested approach through numerical simulations and comparative results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
期刊最新文献
Reinforcement learning for adaptive time-stepping in the chaotic gravitational three-body problem Effects of a moving barrier on the first-passage time of a diffusing particle under stochastic resetting Evolutionary stochastic characteristics of nonlinear oscillator with one side barrier due to multiple modulated Gaussian white noise Global exponential stability of periodic solutions for inertial delayed BAM neural networks Construction and analysis for orthonormalized Runge–Kutta schemes of high-index saddle dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1