Brandon Voelker;Pietro Milillo;Amin Tavakkoliestahbanati;Valentina Macchiarulo;Giorgia Giardina;Michael Recla;Michael Schmitt;Marzia Cescon;Yasemin D. Aktas;Emily So
{"title":"针对 2023 年 2 月土耳其地震的 EEFIT 遥感侦察任务","authors":"Brandon Voelker;Pietro Milillo;Amin Tavakkoliestahbanati;Valentina Macchiarulo;Giorgia Giardina;Michael Recla;Michael Schmitt;Marzia Cescon;Yasemin D. Aktas;Emily So","doi":"10.1109/JSTARS.2024.3476029","DOIUrl":null,"url":null,"abstract":"Accurate and rapid postearthquake structural damage assessment is of vital importance for humanitarian relief. Remote sensing techniques have the potential to map large areas with reduced data latency but are limited by several factors, including accuracy (compared to in-situ monitoring campaigns) and data acquisition frequency. Current damage assessment techniques relying on remote sensing data enable rapid assessment in situations where on-site reconnaissance is not possible or desirable. Yet, these techniques rely on different scales, measurement methods, and spatial resolutions, making it difficult to assimilate many different damage products in a homogeneous damage map. Here, we present the results of the U.K.’s Earthquake Engineering Field Investigation Team's remote-sensing-based reconnaissance mission, which was carried out in the aftermath of the series of earthquakes that struck Turkey and Syria in February 2023. We use a set of publicly available damage maps based on synthetic aperture radar, optical imaging, and ground-based reports as well as in-house developed damage products and assess their relative accuracies. We describe the process of supporting on-site reconnaissance planning by creating maps that describe the building stock and diversity of damage in southeast Turkey to assist field survey teams in selecting regions that represent a diverse sample of building typologies and damage levels. Our results show that satellite-based remote sensing damage maps disagree with each other, and extensive validation data are still required to characterize the accuracy of each method at both high and medium resolution. Finally, we provide recommendations for planning and validation of future earthquake response efforts.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19160-19173"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713507","citationCount":"0","resultStr":"{\"title\":\"The EEFIT Remote Sensing Reconnaissance Mission for the February 2023 Turkey Earthquakes\",\"authors\":\"Brandon Voelker;Pietro Milillo;Amin Tavakkoliestahbanati;Valentina Macchiarulo;Giorgia Giardina;Michael Recla;Michael Schmitt;Marzia Cescon;Yasemin D. Aktas;Emily So\",\"doi\":\"10.1109/JSTARS.2024.3476029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and rapid postearthquake structural damage assessment is of vital importance for humanitarian relief. Remote sensing techniques have the potential to map large areas with reduced data latency but are limited by several factors, including accuracy (compared to in-situ monitoring campaigns) and data acquisition frequency. Current damage assessment techniques relying on remote sensing data enable rapid assessment in situations where on-site reconnaissance is not possible or desirable. Yet, these techniques rely on different scales, measurement methods, and spatial resolutions, making it difficult to assimilate many different damage products in a homogeneous damage map. Here, we present the results of the U.K.’s Earthquake Engineering Field Investigation Team's remote-sensing-based reconnaissance mission, which was carried out in the aftermath of the series of earthquakes that struck Turkey and Syria in February 2023. We use a set of publicly available damage maps based on synthetic aperture radar, optical imaging, and ground-based reports as well as in-house developed damage products and assess their relative accuracies. We describe the process of supporting on-site reconnaissance planning by creating maps that describe the building stock and diversity of damage in southeast Turkey to assist field survey teams in selecting regions that represent a diverse sample of building typologies and damage levels. Our results show that satellite-based remote sensing damage maps disagree with each other, and extensive validation data are still required to characterize the accuracy of each method at both high and medium resolution. Finally, we provide recommendations for planning and validation of future earthquake response efforts.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"19160-19173\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713507\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713507/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713507/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The EEFIT Remote Sensing Reconnaissance Mission for the February 2023 Turkey Earthquakes
Accurate and rapid postearthquake structural damage assessment is of vital importance for humanitarian relief. Remote sensing techniques have the potential to map large areas with reduced data latency but are limited by several factors, including accuracy (compared to in-situ monitoring campaigns) and data acquisition frequency. Current damage assessment techniques relying on remote sensing data enable rapid assessment in situations where on-site reconnaissance is not possible or desirable. Yet, these techniques rely on different scales, measurement methods, and spatial resolutions, making it difficult to assimilate many different damage products in a homogeneous damage map. Here, we present the results of the U.K.’s Earthquake Engineering Field Investigation Team's remote-sensing-based reconnaissance mission, which was carried out in the aftermath of the series of earthquakes that struck Turkey and Syria in February 2023. We use a set of publicly available damage maps based on synthetic aperture radar, optical imaging, and ground-based reports as well as in-house developed damage products and assess their relative accuracies. We describe the process of supporting on-site reconnaissance planning by creating maps that describe the building stock and diversity of damage in southeast Turkey to assist field survey teams in selecting regions that represent a diverse sample of building typologies and damage levels. Our results show that satellite-based remote sensing damage maps disagree with each other, and extensive validation data are still required to characterize the accuracy of each method at both high and medium resolution. Finally, we provide recommendations for planning and validation of future earthquake response efforts.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.