干细胞活动与内源性逆转录病毒的抑制共同作用于成人组织再生

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2024-10-29 DOI:10.1016/j.cell.2024.10.007
Ying Lyu, Soo Jin Kim, Ericka S. Humphrey, Richa Nayak, Yinglu Guan, Qingnan Liang, Kun Hee Kim, Yukun Tan, Jinzhuang Dou, Huandong Sun, Xingzhi Song, Priyadharsini Nagarajan, Kamryn N. Gerner-Mauro, Kevin Jin, Virginia Liu, Rehman H. Hassan, Miranda L. Johnson, Lisa P. Deliu, Yun You, Anurag Sharma, Yejing Ge
{"title":"干细胞活动与内源性逆转录病毒的抑制共同作用于成人组织再生","authors":"Ying Lyu, Soo Jin Kim, Ericka S. Humphrey, Richa Nayak, Yinglu Guan, Qingnan Liang, Kun Hee Kim, Yukun Tan, Jinzhuang Dou, Huandong Sun, Xingzhi Song, Priyadharsini Nagarajan, Kamryn N. Gerner-Mauro, Kevin Jin, Virginia Liu, Rehman H. Hassan, Miranda L. Johnson, Lisa P. Deliu, Yun You, Anurag Sharma, Yejing Ge","doi":"10.1016/j.cell.2024.10.007","DOIUrl":null,"url":null,"abstract":"Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.","PeriodicalId":9656,"journal":{"name":"Cell","volume":null,"pages":null},"PeriodicalIF":45.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration\",\"authors\":\"Ying Lyu, Soo Jin Kim, Ericka S. Humphrey, Richa Nayak, Yinglu Guan, Qingnan Liang, Kun Hee Kim, Yukun Tan, Jinzhuang Dou, Huandong Sun, Xingzhi Song, Priyadharsini Nagarajan, Kamryn N. Gerner-Mauro, Kevin Jin, Virginia Liu, Rehman H. Hassan, Miranda L. Johnson, Lisa P. Deliu, Yun You, Anurag Sharma, Yejing Ge\",\"doi\":\"10.1016/j.cell.2024.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.10.007\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.10.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物反转座子占基因组的40%。在组织再生过程中,成体干细胞会协调地抑制逆转录转座子并激活系基因,但人们对这种协调是如何控制的还知之甚少。在这里,我们观察到组蛋白甲基转移酶SETDB1(逆转录转座子抑制因子)的动态表达密切反映了小鼠皮肤中干细胞的活动。SETDB1的消减会导致内源性逆转录病毒(ERV,逆转录转座子的一种)的重新激活和病毒样颗粒的组装,从而导致脱发和干细胞衰竭,而抗病毒药物是可逆的。从机理上讲,至少有两种在分子和空间上截然不同的途径起作用:毛囊干细胞和祖细胞介导的抗病毒防御,以及瞬时扩增细胞复制压力导致的抗病毒独立反应。DNA去甲基化酶十-十一易位(TET)介导的羟甲基化促进了ERV的再激活,而细胞命运转录因子的消减则再现了ERV的再激活。总之,我们证明了ERV沉默与干细胞活性有关,对成体毛发再生至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration
Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Organ-specific electrophile responsivity mapping in live C. elegans Recognition of BACH1 quaternary structure degrons by two F-box proteins under oxidative stress Multimodal targeting chimeras enable integrated immunotherapy leveraging tumor-immune microenvironment Type III interferons induce pyroptosis in gut epithelial cells and impair mucosal repair Regulatory mechanisms of strigolactone perception in rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1