为具有固体输送限制的材料设计颗粒形态:富锂和富锰阴极氧化物案例研究

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-10-29 DOI:10.1021/acs.chemmater.3c02411
Deepti Tewari, Arturo Gutierrez, Jason Croy, Venkat Srinivasan
{"title":"为具有固体输送限制的材料设计颗粒形态:富锂和富锰阴极氧化物案例研究","authors":"Deepti Tewari, Arturo Gutierrez, Jason Croy, Venkat Srinivasan","doi":"10.1021/acs.chemmater.3c02411","DOIUrl":null,"url":null,"abstract":"A lithium and manganese rich nickel–manganese–cobalt oxide (LMR-NMC) cathode is a promising candidate for next-generation batteries due to its high specific capacity, low cost, and low cobalt content. However, the material suffers from poor rate capability due to the diffusion limitations of lithium in the cathode particles. Understanding the material performance requires careful control of the morphology of the cathode particles, taking into account the primary and agglomerated diffusion pathways and the presence of pores, some of which could be closed from electrolyte infiltration. In this study, we use a microstructure-based mathematical model combined with experimental data to understand the role of the complex cathode particle morphology in the rate performance of the material. Scanning electron microscopy images of cathodes made under different synthesis conditions, which results in different agglomerate morphologies, serve as the input into the mathematical model. The model is then compared to rate data to understand the controlling parameters. The presence of intra-agglomerate closed pores results in a large agglomerate diffusion length in comparison to the ideal condition, where the primary particles are agglomerated in an open and dispersed manner such that the entire interfacial area is available for electrochemical reaction. Smaller primary and agglomerate diffusion lengths result in better electrochemical performance. This points us toward designing the morphology of the cathode particles to compensate for the diffusion limitation of LMR-NMC while maximizing the density.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Particle Morphologies for Materials with Solid Transport Limitations: A Case Study of Lithium and Manganese Rich Cathode Oxides\",\"authors\":\"Deepti Tewari, Arturo Gutierrez, Jason Croy, Venkat Srinivasan\",\"doi\":\"10.1021/acs.chemmater.3c02411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lithium and manganese rich nickel–manganese–cobalt oxide (LMR-NMC) cathode is a promising candidate for next-generation batteries due to its high specific capacity, low cost, and low cobalt content. However, the material suffers from poor rate capability due to the diffusion limitations of lithium in the cathode particles. Understanding the material performance requires careful control of the morphology of the cathode particles, taking into account the primary and agglomerated diffusion pathways and the presence of pores, some of which could be closed from electrolyte infiltration. In this study, we use a microstructure-based mathematical model combined with experimental data to understand the role of the complex cathode particle morphology in the rate performance of the material. Scanning electron microscopy images of cathodes made under different synthesis conditions, which results in different agglomerate morphologies, serve as the input into the mathematical model. The model is then compared to rate data to understand the controlling parameters. The presence of intra-agglomerate closed pores results in a large agglomerate diffusion length in comparison to the ideal condition, where the primary particles are agglomerated in an open and dispersed manner such that the entire interfacial area is available for electrochemical reaction. Smaller primary and agglomerate diffusion lengths result in better electrochemical performance. This points us toward designing the morphology of the cathode particles to compensate for the diffusion limitation of LMR-NMC while maximizing the density.\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.3c02411\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.3c02411","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富含锂和锰的镍锰钴氧化物(LMR-NMC)阴极具有高比容量、低成本和低钴含量的特点,是下一代电池的理想候选材料。然而,由于锂在阴极颗粒中的扩散限制,该材料的速率能力较差。要了解材料的性能,就必须仔细控制正极颗粒的形态,同时考虑到主要扩散途径和团聚扩散途径以及孔隙的存在,其中一些孔隙可能因电解质渗入而封闭。在本研究中,我们使用基于微观结构的数学模型并结合实验数据,来了解复杂的阴极颗粒形态在材料速率性能中的作用。在不同合成条件下制造的阴极会产生不同的团聚形态,扫描电子显微镜图像可作为数学模型的输入。然后将模型与速率数据进行比较,以了解控制参数。在理想条件下,初级粒子以开放和分散的方式团聚,整个界面区域都可用于电化学反应,相比之下,团聚体内部封闭孔隙的存在导致团聚体扩散长度较大。较小的原生粒子和团聚体扩散长度可带来更好的电化学性能。这就告诉我们,在设计阴极颗粒形态时,既要弥补 LMR-NMC 的扩散限制,又要最大限度地提高密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Particle Morphologies for Materials with Solid Transport Limitations: A Case Study of Lithium and Manganese Rich Cathode Oxides
A lithium and manganese rich nickel–manganese–cobalt oxide (LMR-NMC) cathode is a promising candidate for next-generation batteries due to its high specific capacity, low cost, and low cobalt content. However, the material suffers from poor rate capability due to the diffusion limitations of lithium in the cathode particles. Understanding the material performance requires careful control of the morphology of the cathode particles, taking into account the primary and agglomerated diffusion pathways and the presence of pores, some of which could be closed from electrolyte infiltration. In this study, we use a microstructure-based mathematical model combined with experimental data to understand the role of the complex cathode particle morphology in the rate performance of the material. Scanning electron microscopy images of cathodes made under different synthesis conditions, which results in different agglomerate morphologies, serve as the input into the mathematical model. The model is then compared to rate data to understand the controlling parameters. The presence of intra-agglomerate closed pores results in a large agglomerate diffusion length in comparison to the ideal condition, where the primary particles are agglomerated in an open and dispersed manner such that the entire interfacial area is available for electrochemical reaction. Smaller primary and agglomerate diffusion lengths result in better electrochemical performance. This points us toward designing the morphology of the cathode particles to compensate for the diffusion limitation of LMR-NMC while maximizing the density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. "Lupus Myelitis" Revisited: A Retrospective Single-Center Study of Myelitis Associated With Rheumatologic Disease. Missing Full Disclosures. Clinical and Radiographic Improvement Following Steroid Therapy in Subacute Post-Traumatic Ascending Myelopathy. Lumipulse-Measured Cerebrospinal Fluid Biomarkers for the Early Detection of Alzheimer Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1