使用机器学习进行系统性文献综述案例:敏捷软件开发

Itzik David, Roy Gelbard
{"title":"使用机器学习进行系统性文献综述案例:敏捷软件开发","authors":"Itzik David, Roy Gelbard","doi":"10.1002/widm.1569","DOIUrl":null,"url":null,"abstract":"Systematic literature reviews (SLRs) are essential for researchers to keep up with past and recent research in their domains. However, the rapid growth in knowledge creation and the rising number of publications have made this task increasingly complex and challenging. Moreover, most systematic literature reviews are performed manually, which requires significant effort and creates potential bias. The risk of bias is particularly relevant in the data synthesis task, where researchers interpret each study's evidence and summarize the results. This study uses an experimental approach to explore using machine learning (ML) techniques in the SLR process. Specifically, this study replicates a study that manually performed sentiment analysis for the <jats:italic>data synthesis</jats:italic> step to determine the polarity (negative or positive) of evidence extracted from studies in the field of agile methodology. This study employs a lexicon‐based approach to sentiment analysis and achieves an accuracy rate of approximately 86.5% in identifying study evidence polarity.","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"237 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning for Systematic Literature Review Case in Point: Agile Software Development\",\"authors\":\"Itzik David, Roy Gelbard\",\"doi\":\"10.1002/widm.1569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systematic literature reviews (SLRs) are essential for researchers to keep up with past and recent research in their domains. However, the rapid growth in knowledge creation and the rising number of publications have made this task increasingly complex and challenging. Moreover, most systematic literature reviews are performed manually, which requires significant effort and creates potential bias. The risk of bias is particularly relevant in the data synthesis task, where researchers interpret each study's evidence and summarize the results. This study uses an experimental approach to explore using machine learning (ML) techniques in the SLR process. Specifically, this study replicates a study that manually performed sentiment analysis for the <jats:italic>data synthesis</jats:italic> step to determine the polarity (negative or positive) of evidence extracted from studies in the field of agile methodology. This study employs a lexicon‐based approach to sentiment analysis and achieves an accuracy rate of approximately 86.5% in identifying study evidence polarity.\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"237 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.1569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

系统性文献综述(SLR)对于研究人员了解其研究领域过去和近期的研究情况至关重要。然而,知识创造的快速增长和出版物数量的不断增加使这项工作变得越来越复杂和具有挑战性。此外,大多数系统性文献综述都是人工完成的,这不仅需要大量的精力,还可能造成偏差。在研究人员解释每项研究的证据并总结结果的数据综合任务中,偏差风险尤为重要。本研究采用实验方法,探索在 SLR 过程中使用机器学习(ML)技术。具体来说,本研究复制了一项研究,该研究在数据综合步骤中手动执行情感分析,以确定从敏捷方法学领域的研究中提取的证据的极性(负面或正面)。本研究采用了基于词库的情感分析方法,在识别研究证据极性方面达到了约 86.5% 的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Machine Learning for Systematic Literature Review Case in Point: Agile Software Development
Systematic literature reviews (SLRs) are essential for researchers to keep up with past and recent research in their domains. However, the rapid growth in knowledge creation and the rising number of publications have made this task increasingly complex and challenging. Moreover, most systematic literature reviews are performed manually, which requires significant effort and creates potential bias. The risk of bias is particularly relevant in the data synthesis task, where researchers interpret each study's evidence and summarize the results. This study uses an experimental approach to explore using machine learning (ML) techniques in the SLR process. Specifically, this study replicates a study that manually performed sentiment analysis for the data synthesis step to determine the polarity (negative or positive) of evidence extracted from studies in the field of agile methodology. This study employs a lexicon‐based approach to sentiment analysis and achieves an accuracy rate of approximately 86.5% in identifying study evidence polarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trace Encoding Techniques for Multi‐Perspective Process Mining: A Comparative Study Hyper‐Parameter Optimization of Kernel Functions on Multi‐Class Text Categorization: A Comparative Evaluation Dimensionality Reduction for Data Analysis With Quantum Feature Learning Business Analytics in Customer Lifetime Value: An Overview Analysis Knowledge Graph for Solubility Big Data: Construction and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1