{"title":"超声波场对铁铬铝涂层摩擦和氧化特性的影响","authors":"Changhao Liu, Xiufang Cui, Guo Jin, Meng Qi, Jiaxin Zhao, Di Wu, Xin Wen","doi":"10.1016/j.jnucmat.2024.155457","DOIUrl":null,"url":null,"abstract":"<div><div>FeCrAl coatings were applied to the surface of F/M steel using ultrasonic vibration-assisted laser cladding (UVALC) technique. The introduction of an ultrasonic field refined the microstructure of the FeCrAl coating, enhancing its microhardness and the integrity of the oxide film at elevated temperatures. The increased hardness led to a shift in the wear mechanism from oxidation wear to abrasive wear. In high-temperature conditions, a finer microstructure of the coating resulted in a denser oxide layer, improving the tribological properties and oxidation resistance of the coating. Furthermore, high-temperature oxidation analysis revealed that the predominant oxides formed were Fe<sub>2</sub>O<sub>3</sub> and Cr<sub>2</sub>O<sub>3</sub>.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155457"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ultrasonic field on the friction and oxidation characteristics of FeCrAl coatings\",\"authors\":\"Changhao Liu, Xiufang Cui, Guo Jin, Meng Qi, Jiaxin Zhao, Di Wu, Xin Wen\",\"doi\":\"10.1016/j.jnucmat.2024.155457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>FeCrAl coatings were applied to the surface of F/M steel using ultrasonic vibration-assisted laser cladding (UVALC) technique. The introduction of an ultrasonic field refined the microstructure of the FeCrAl coating, enhancing its microhardness and the integrity of the oxide film at elevated temperatures. The increased hardness led to a shift in the wear mechanism from oxidation wear to abrasive wear. In high-temperature conditions, a finer microstructure of the coating resulted in a denser oxide layer, improving the tribological properties and oxidation resistance of the coating. Furthermore, high-temperature oxidation analysis revealed that the predominant oxides formed were Fe<sub>2</sub>O<sub>3</sub> and Cr<sub>2</sub>O<sub>3</sub>.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"603 \",\"pages\":\"Article 155457\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311524005579\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005579","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of ultrasonic field on the friction and oxidation characteristics of FeCrAl coatings
FeCrAl coatings were applied to the surface of F/M steel using ultrasonic vibration-assisted laser cladding (UVALC) technique. The introduction of an ultrasonic field refined the microstructure of the FeCrAl coating, enhancing its microhardness and the integrity of the oxide film at elevated temperatures. The increased hardness led to a shift in the wear mechanism from oxidation wear to abrasive wear. In high-temperature conditions, a finer microstructure of the coating resulted in a denser oxide layer, improving the tribological properties and oxidation resistance of the coating. Furthermore, high-temperature oxidation analysis revealed that the predominant oxides formed were Fe2O3 and Cr2O3.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.