Eun-Young Choi , Seungwoo Paek , Taehyoung Kim , In-Ho Jung , Seol Kim , Sang-Eun Bae , Jae Soo Ryu
{"title":"在不锈钢坩埚中的熔融 LiCl-KCl 盐腐蚀介导的金属铀氯化铀(III)生成过程","authors":"Eun-Young Choi , Seungwoo Paek , Taehyoung Kim , In-Ho Jung , Seol Kim , Sang-Eun Bae , Jae Soo Ryu","doi":"10.1016/j.jnucmat.2024.155463","DOIUrl":null,"url":null,"abstract":"<div><div>Uranium (III) chloride (UCl<sub>3</sub>) is a crucial component of a potent nuclear recycling technology—pyroprocessing—and next-generation molten salt reactors. It is usually synthesized by reacting metallic uranium with chlorinating agents (e.g., CdCl<sub>2</sub> and PbCl<sub>2</sub>) in molten chloride salts. In this study, we report the unexpected formation of UCl<sub>3</sub> from metallic simulated fuel (simfuel) immersed in impure molten LiCl–KCl salt (in the presence of a small amount of residual H<sub>2</sub>O) in a stainless-steel (SS) crucible, without a chlorinating agent. We investigated various factors influencing UCl<sub>3</sub> formation, including fuel type (metallic simfuel, pure U, oxide simfuel, or no fuel), crucible material (SS or alumina), salt composition (LiCl–KCl or LiCl), temperature (773 K or 923 K), and contact between fuel and SS crucible. UCl<sub>3</sub> only formed when metallic fuels (simfuel or pure U) were immersed in molten salt in the SS crucible, with higher concentrations at elevated temperatures. Oxide fuels did not produce UCl<sub>3</sub>, nor did contact with the crucible affect formation. Our findings suggest that impurities, particularly moisture in the salt, corroded the SS crucible, releasing iron and chromium chlorides that reacted with metallic U to form UCl<sub>3</sub>. UCl<sub>3</sub> formation was more pronounced in LiCl–KCl than in LiCl, and thermodynamic calculations helped establish the mechanism.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155463"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion-mediated production of uranium(III) chloride from metallic uranium in molten LiCl–KCl salt contained within a stainless-steel crucible\",\"authors\":\"Eun-Young Choi , Seungwoo Paek , Taehyoung Kim , In-Ho Jung , Seol Kim , Sang-Eun Bae , Jae Soo Ryu\",\"doi\":\"10.1016/j.jnucmat.2024.155463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Uranium (III) chloride (UCl<sub>3</sub>) is a crucial component of a potent nuclear recycling technology—pyroprocessing—and next-generation molten salt reactors. It is usually synthesized by reacting metallic uranium with chlorinating agents (e.g., CdCl<sub>2</sub> and PbCl<sub>2</sub>) in molten chloride salts. In this study, we report the unexpected formation of UCl<sub>3</sub> from metallic simulated fuel (simfuel) immersed in impure molten LiCl–KCl salt (in the presence of a small amount of residual H<sub>2</sub>O) in a stainless-steel (SS) crucible, without a chlorinating agent. We investigated various factors influencing UCl<sub>3</sub> formation, including fuel type (metallic simfuel, pure U, oxide simfuel, or no fuel), crucible material (SS or alumina), salt composition (LiCl–KCl or LiCl), temperature (773 K or 923 K), and contact between fuel and SS crucible. UCl<sub>3</sub> only formed when metallic fuels (simfuel or pure U) were immersed in molten salt in the SS crucible, with higher concentrations at elevated temperatures. Oxide fuels did not produce UCl<sub>3</sub>, nor did contact with the crucible affect formation. Our findings suggest that impurities, particularly moisture in the salt, corroded the SS crucible, releasing iron and chromium chlorides that reacted with metallic U to form UCl<sub>3</sub>. UCl<sub>3</sub> formation was more pronounced in LiCl–KCl than in LiCl, and thermodynamic calculations helped establish the mechanism.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"603 \",\"pages\":\"Article 155463\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311524005634\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005634","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
氯化铀(III)(UCl3)是一种有效的核回收技术--热处理和下一代熔盐反应堆的重要组成部分。它通常是通过金属铀与氯化剂(如 CdCl2 和 PbCl2)在熔融氯化盐中发生反应而合成的。在本研究中,我们报告了金属模拟燃料(simfuel)在不锈钢(SS)坩埚中浸入不纯的熔融 LiCl-KCl 盐(存在少量残余 H2O)后,在没有氯化剂的情况下意外地形成了 UCl3。我们研究了影响 UCl3 形成的各种因素,包括燃料类型(金属模拟燃料、纯 U、氧化物模拟燃料或无燃料)、坩埚材料(SS 或氧化铝)、盐成分(LiCl-KCl 或 LiCl)、温度(773 K 或 923 K)以及燃料与 SS 坩埚之间的接触。只有当金属燃料(simfuel 或纯 U)浸入 SS 坩埚中的熔盐时才会形成 UCl3,温度升高时浓度更高。氧化物燃料不会产生三氯化铀,与坩埚的接触也不会影响三氯化铀的形成。我们的研究结果表明,杂质,尤其是盐中的水分,腐蚀了 SS 坩埚,释放出铁和铬的氯化物,与金属铀反应生成三氯化铀。UCl3 在 LiCl-KCl 中的形成比在 LiCl 中更明显,热力学计算有助于确定其机理。
Corrosion-mediated production of uranium(III) chloride from metallic uranium in molten LiCl–KCl salt contained within a stainless-steel crucible
Uranium (III) chloride (UCl3) is a crucial component of a potent nuclear recycling technology—pyroprocessing—and next-generation molten salt reactors. It is usually synthesized by reacting metallic uranium with chlorinating agents (e.g., CdCl2 and PbCl2) in molten chloride salts. In this study, we report the unexpected formation of UCl3 from metallic simulated fuel (simfuel) immersed in impure molten LiCl–KCl salt (in the presence of a small amount of residual H2O) in a stainless-steel (SS) crucible, without a chlorinating agent. We investigated various factors influencing UCl3 formation, including fuel type (metallic simfuel, pure U, oxide simfuel, or no fuel), crucible material (SS or alumina), salt composition (LiCl–KCl or LiCl), temperature (773 K or 923 K), and contact between fuel and SS crucible. UCl3 only formed when metallic fuels (simfuel or pure U) were immersed in molten salt in the SS crucible, with higher concentrations at elevated temperatures. Oxide fuels did not produce UCl3, nor did contact with the crucible affect formation. Our findings suggest that impurities, particularly moisture in the salt, corroded the SS crucible, releasing iron and chromium chlorides that reacted with metallic U to form UCl3. UCl3 formation was more pronounced in LiCl–KCl than in LiCl, and thermodynamic calculations helped establish the mechanism.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.