用于光催化去除亚甲基蓝染料的新型 S 型衍生 Mo-Bi2WO6/WO3/Biochar 复合材料

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-10-17 DOI:10.1016/j.jpcs.2024.112385
Anchal Rana , Sonu Sonu , Vatika Soni , Akshay Chawla , Anita Sudhaik , Pankaj Raizada , Tansir Ahamad , Pankaj Thakur , Sourbh Thakur , Pardeep Singh
{"title":"用于光催化去除亚甲基蓝染料的新型 S 型衍生 Mo-Bi2WO6/WO3/Biochar 复合材料","authors":"Anchal Rana ,&nbsp;Sonu Sonu ,&nbsp;Vatika Soni ,&nbsp;Akshay Chawla ,&nbsp;Anita Sudhaik ,&nbsp;Pankaj Raizada ,&nbsp;Tansir Ahamad ,&nbsp;Pankaj Thakur ,&nbsp;Sourbh Thakur ,&nbsp;Pardeep Singh","doi":"10.1016/j.jpcs.2024.112385","DOIUrl":null,"url":null,"abstract":"<div><div>Presently, the distinct charge transport and interface interaction of the S-scheme heterojunction has garnered significant interest. Herein, a S-scheme-based charge transportation Mo-doped Bi<sub>2</sub>WO<sub>6</sub>/WO<sub>3</sub>/Biochar heterojunction was synthesized in situ using a coprecipitation technique to improve methylene blue adsorption and photocatalytic reactive oxygen species production. The doped Mo altered the band gap of Bi<sub>2</sub>WO<sub>6</sub> to increase light absorption, which can facilitate electron-hole separation and transfer. Likewise, the S-scheme band structure improved sunlight utilization, enhanced the reduction and oxidation power of photogenerated electrons, and boosted charge carrier separation and transfer. Thus, due to the synergetic impact of doping and the S scheme band structure, the photocatalysts efficiently eliminated Methylene blue up to 87.5 % in 30 min of photoirradiation. Fabricated heterojunction Mo–Bi<sub>2</sub>WO<sub>6</sub>/WO<sub>3</sub>/Biochar photocatalyst have highest Kapp values 0.02816 min<sup>−1</sup> while Mo–Bi<sub>2</sub>WO<sub>6</sub>/WO<sub>3</sub>, Mo–Bi<sub>2</sub>WO<sub>6</sub>, Bi<sub>2</sub>WO<sub>6</sub>, and WO<sub>3</sub> photocatalysts have 0.02816, 0.02273, 0.01527, 0.00643, and 0.00735 min<sup>−1</sup>, respectively which was 4.38 times greater than pristine Bi<sub>2</sub>WO<sub>6</sub>. The study offers a novel perspective for the in-situ production of S-scheme heterojunction with doping to remove different types of contaminants.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112385"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel S-scheme derived Mo–Bi2WO6/WO3/Biochar composite for photocatalytic removal of Methylene Blue dye\",\"authors\":\"Anchal Rana ,&nbsp;Sonu Sonu ,&nbsp;Vatika Soni ,&nbsp;Akshay Chawla ,&nbsp;Anita Sudhaik ,&nbsp;Pankaj Raizada ,&nbsp;Tansir Ahamad ,&nbsp;Pankaj Thakur ,&nbsp;Sourbh Thakur ,&nbsp;Pardeep Singh\",\"doi\":\"10.1016/j.jpcs.2024.112385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Presently, the distinct charge transport and interface interaction of the S-scheme heterojunction has garnered significant interest. Herein, a S-scheme-based charge transportation Mo-doped Bi<sub>2</sub>WO<sub>6</sub>/WO<sub>3</sub>/Biochar heterojunction was synthesized in situ using a coprecipitation technique to improve methylene blue adsorption and photocatalytic reactive oxygen species production. The doped Mo altered the band gap of Bi<sub>2</sub>WO<sub>6</sub> to increase light absorption, which can facilitate electron-hole separation and transfer. Likewise, the S-scheme band structure improved sunlight utilization, enhanced the reduction and oxidation power of photogenerated electrons, and boosted charge carrier separation and transfer. Thus, due to the synergetic impact of doping and the S scheme band structure, the photocatalysts efficiently eliminated Methylene blue up to 87.5 % in 30 min of photoirradiation. Fabricated heterojunction Mo–Bi<sub>2</sub>WO<sub>6</sub>/WO<sub>3</sub>/Biochar photocatalyst have highest Kapp values 0.02816 min<sup>−1</sup> while Mo–Bi<sub>2</sub>WO<sub>6</sub>/WO<sub>3</sub>, Mo–Bi<sub>2</sub>WO<sub>6</sub>, Bi<sub>2</sub>WO<sub>6</sub>, and WO<sub>3</sub> photocatalysts have 0.02816, 0.02273, 0.01527, 0.00643, and 0.00735 min<sup>−1</sup>, respectively which was 4.38 times greater than pristine Bi<sub>2</sub>WO<sub>6</sub>. The study offers a novel perspective for the in-situ production of S-scheme heterojunction with doping to remove different types of contaminants.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"196 \",\"pages\":\"Article 112385\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005201\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,S 型异质结独特的电荷传输和界面相互作用引起了人们的极大兴趣。本文利用共沉淀技术原位合成了一种基于 S 型电荷传输的掺杂 Mo 的 Bi2WO6/WO3/Biochar 异质结,以改善亚甲基蓝的吸附和光催化活性氧的产生。掺杂的 Mo 改变了 Bi2WO6 的带隙,增加了光吸收,从而促进了电子-空穴的分离和转移。同样,S 型带结构提高了对阳光的利用率,增强了光生电子的还原和氧化能力,促进了电荷载流子的分离和转移。因此,在掺杂和 S 型能带结构的协同作用下,光催化剂在 30 分钟的光照时间内有效消除了高达 87.5% 的亚甲基蓝。制备的异质结 Mo-Bi2WO6/WO3/Biochar 光催化剂的最高 Kapp 值为 0.02816 min-1,而 Mo-Bi2WO6/WO3、Mo-Bi2WO6、Bi2WO6 和 WO3 光催化剂的 Kapp 值分别为 0.02816、0.02273、0.01527、0.00643 和 0.00735 min-1,是原始 Bi2WO6 的 4.38 倍。该研究为原位制备掺杂去除不同类型污染物的 S 型异质结提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel S-scheme derived Mo–Bi2WO6/WO3/Biochar composite for photocatalytic removal of Methylene Blue dye
Presently, the distinct charge transport and interface interaction of the S-scheme heterojunction has garnered significant interest. Herein, a S-scheme-based charge transportation Mo-doped Bi2WO6/WO3/Biochar heterojunction was synthesized in situ using a coprecipitation technique to improve methylene blue adsorption and photocatalytic reactive oxygen species production. The doped Mo altered the band gap of Bi2WO6 to increase light absorption, which can facilitate electron-hole separation and transfer. Likewise, the S-scheme band structure improved sunlight utilization, enhanced the reduction and oxidation power of photogenerated electrons, and boosted charge carrier separation and transfer. Thus, due to the synergetic impact of doping and the S scheme band structure, the photocatalysts efficiently eliminated Methylene blue up to 87.5 % in 30 min of photoirradiation. Fabricated heterojunction Mo–Bi2WO6/WO3/Biochar photocatalyst have highest Kapp values 0.02816 min−1 while Mo–Bi2WO6/WO3, Mo–Bi2WO6, Bi2WO6, and WO3 photocatalysts have 0.02816, 0.02273, 0.01527, 0.00643, and 0.00735 min−1, respectively which was 4.38 times greater than pristine Bi2WO6. The study offers a novel perspective for the in-situ production of S-scheme heterojunction with doping to remove different types of contaminants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Editorial Board Study on structure and electrical properties of BNBT-La2/3ZrO3 ceramic Constructing a binderless carbon-coated In2O3 anode for high-performance lithium-ion batteries Simulation and optimization of a CsSnI3/CsSnGeI3/Cs3Bi2I9 based triple absorber layer perovskite solar cell using SCAPS-1D RPA Dielectric functions: Streamlined approach to relaxation effects, binding and high momentum dispersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1