{"title":"太阳能电池的创新设计策略:以 PTAA 作为 HTL 的线性梯度包晶太阳能电池的理论研究","authors":"","doi":"10.1016/j.jpcs.2024.112401","DOIUrl":null,"url":null,"abstract":"<div><div>Over the previous few decades, numerous scientific and theoretical approaches have been employed to increase solar cell efficiency. To improve PV cell efficiency, this study employs grading methodologies and modifies temperature, series resistance, different defect densities, and graded layer thickness. The paper presents a theoretical examination of the linearly graded device structure (Au/PTAA/CsPbBr<sub>3-x</sub>I<sub>x</sub>/TiO<sub>2</sub>/FTO). A linearly graded perovskite layer, responsible for absorbing a wide range of light spectra with different wavelengths, assists in bettering the solar cell's characteristics. In this device, polytriarylamine (PTAA) acts as an HTL, and TiO<sub>2</sub> acts as an ETL. SCAPS-1D, a simulation program, is used for our theoretical analysis. The output results obtained from the simulation are as follows: PCE of 20.50 %, J<sub>SC</sub> of 18.071 mA cm<sup>−2</sup>, V<sub>OC</sub> of 1.4531 V, and FF of 78.08 %.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative design strategies for solar cells: Theoretical examination of linearly graded perovskite solar cell with PTAA as HTL\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the previous few decades, numerous scientific and theoretical approaches have been employed to increase solar cell efficiency. To improve PV cell efficiency, this study employs grading methodologies and modifies temperature, series resistance, different defect densities, and graded layer thickness. The paper presents a theoretical examination of the linearly graded device structure (Au/PTAA/CsPbBr<sub>3-x</sub>I<sub>x</sub>/TiO<sub>2</sub>/FTO). A linearly graded perovskite layer, responsible for absorbing a wide range of light spectra with different wavelengths, assists in bettering the solar cell's characteristics. In this device, polytriarylamine (PTAA) acts as an HTL, and TiO<sub>2</sub> acts as an ETL. SCAPS-1D, a simulation program, is used for our theoretical analysis. The output results obtained from the simulation are as follows: PCE of 20.50 %, J<sub>SC</sub> of 18.071 mA cm<sup>−2</sup>, V<sub>OC</sub> of 1.4531 V, and FF of 78.08 %.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005365\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005365","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Innovative design strategies for solar cells: Theoretical examination of linearly graded perovskite solar cell with PTAA as HTL
Over the previous few decades, numerous scientific and theoretical approaches have been employed to increase solar cell efficiency. To improve PV cell efficiency, this study employs grading methodologies and modifies temperature, series resistance, different defect densities, and graded layer thickness. The paper presents a theoretical examination of the linearly graded device structure (Au/PTAA/CsPbBr3-xIx/TiO2/FTO). A linearly graded perovskite layer, responsible for absorbing a wide range of light spectra with different wavelengths, assists in bettering the solar cell's characteristics. In this device, polytriarylamine (PTAA) acts as an HTL, and TiO2 acts as an ETL. SCAPS-1D, a simulation program, is used for our theoretical analysis. The output results obtained from the simulation are as follows: PCE of 20.50 %, JSC of 18.071 mA cm−2, VOC of 1.4531 V, and FF of 78.08 %.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.