调整作为 K+ 离子电池阳极的联苯涂层金属的电化学性能

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-10-17 DOI:10.1016/j.jpcs.2024.112387
{"title":"调整作为 K+ 离子电池阳极的联苯涂层金属的电化学性能","authors":"","doi":"10.1016/j.jpcs.2024.112387","DOIUrl":null,"url":null,"abstract":"<div><div>The researchers employed density functional theory (DFT) computations to assess suitability of BP-biphenylene (b-BP) monolayers for application in potassium-ion battery systems. In their evaluations, the researchers considered various factors, like adsorption energy (E<sub>ad</sub>) of the b-BP monolayer with adsorbed potassium adatoms, in addition to diffusion energy barrier (E<sub>bar</sub>) and storage capacity and of potassium ions on this surface. The results indicated that the b-BP monolayer has significantly higher potassium-ion storage capacities, reaching 1026 mAh/g, compared to typical graphite anodes and other carbon materials. The E<sub>bar</sub> for potassium ions on the b-BP monolayer was determined to be 0.22 eV. Furthermore, anticipated open-circuit voltage (OCV) values for this material were found to lie within acceptable range of 0.25–1.2 V, making it suitable for use as an anode. These research findings underscore the potential of the b-BP monolayer as an appropriate anode material for potassium-ion battery (KIBs) applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the electrochemical performance of a biphenylene coated metal as the anode for K+-ion batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The researchers employed density functional theory (DFT) computations to assess suitability of BP-biphenylene (b-BP) monolayers for application in potassium-ion battery systems. In their evaluations, the researchers considered various factors, like adsorption energy (E<sub>ad</sub>) of the b-BP monolayer with adsorbed potassium adatoms, in addition to diffusion energy barrier (E<sub>bar</sub>) and storage capacity and of potassium ions on this surface. The results indicated that the b-BP monolayer has significantly higher potassium-ion storage capacities, reaching 1026 mAh/g, compared to typical graphite anodes and other carbon materials. The E<sub>bar</sub> for potassium ions on the b-BP monolayer was determined to be 0.22 eV. Furthermore, anticipated open-circuit voltage (OCV) values for this material were found to lie within acceptable range of 0.25–1.2 V, making it suitable for use as an anode. These research findings underscore the potential of the b-BP monolayer as an appropriate anode material for potassium-ion battery (KIBs) applications.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005225\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005225","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员利用密度泛函理论(DFT)计算评估了 BP-联苯(b-BP)单层在钾离子电池系统中的适用性。在评估过程中,研究人员考虑了各种因素,如吸附了钾原子的 b-BP 单层的吸附能(Ead)、扩散能垒(Ebar)以及钾离子在该表面上的存储容量。结果表明,与典型的石墨阳极和其他碳材料相比,b-BP 单层的钾离子存储容量明显更高,达到 1026 mAh/g。据测定,b-BP 单层上钾离子的电子伏特为 0.22 eV。此外,还发现这种材料的预期开路电压 (OCV) 值在 0.25-1.2 V 的可接受范围内,因此适合用作阳极。这些研究成果强调了 b-BP 单层材料作为钾离子电池(KIBs)应用的适当阳极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning the electrochemical performance of a biphenylene coated metal as the anode for K+-ion batteries
The researchers employed density functional theory (DFT) computations to assess suitability of BP-biphenylene (b-BP) monolayers for application in potassium-ion battery systems. In their evaluations, the researchers considered various factors, like adsorption energy (Ead) of the b-BP monolayer with adsorbed potassium adatoms, in addition to diffusion energy barrier (Ebar) and storage capacity and of potassium ions on this surface. The results indicated that the b-BP monolayer has significantly higher potassium-ion storage capacities, reaching 1026 mAh/g, compared to typical graphite anodes and other carbon materials. The Ebar for potassium ions on the b-BP monolayer was determined to be 0.22 eV. Furthermore, anticipated open-circuit voltage (OCV) values for this material were found to lie within acceptable range of 0.25–1.2 V, making it suitable for use as an anode. These research findings underscore the potential of the b-BP monolayer as an appropriate anode material for potassium-ion battery (KIBs) applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery Facile synthesis of carbon particles composed of N-doped carbon nanotube and their application in lithium-ion batteries Sonochemical synthesis of mesoporous ZnyCd1-yS quantum dots: Composition-dependent optical, electrical, dielectric, and hydrogen-generation characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1