利用库普曼算子进行数据驱动的瞬态稳定性分析

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical Power & Energy Systems Pub Date : 2024-10-23 DOI:10.1016/j.ijepes.2024.110307
Amar Ramapuram Matavalam , Boya Hou , Hyungjin Choi , Subhonmesh Bose , Umesh Vaidya
{"title":"利用库普曼算子进行数据驱动的瞬态稳定性分析","authors":"Amar Ramapuram Matavalam ,&nbsp;Boya Hou ,&nbsp;Hyungjin Choi ,&nbsp;Subhonmesh Bose ,&nbsp;Umesh Vaidya","doi":"10.1016/j.ijepes.2024.110307","DOIUrl":null,"url":null,"abstract":"<div><div>We present data-driven methods for power system transient stability analysis using a unit eigenfunction of the Koopman operator. We show that the Koopman eigenfunction with unit eigenvalue can identify the region of attraction of the post-fault stable equilibrium. We then leverage this property to estimate the critical clearing time of a fault. We provide two data-driven methods to estimate said eigenfunction; the first method utilizes time averages over long trajectories, and the second method leverages nonparametric learning of system dynamics over reproducing kernel Hilbert spaces with short bursts of state propagation. Our methods do not require explicit knowledge of the power system model, but require a simulator that can propagate states through the power system dynamics. Numerical experiments on three power system examples demonstrate the efficacy of our method.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110307"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven transient stability analysis using the Koopman operator\",\"authors\":\"Amar Ramapuram Matavalam ,&nbsp;Boya Hou ,&nbsp;Hyungjin Choi ,&nbsp;Subhonmesh Bose ,&nbsp;Umesh Vaidya\",\"doi\":\"10.1016/j.ijepes.2024.110307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present data-driven methods for power system transient stability analysis using a unit eigenfunction of the Koopman operator. We show that the Koopman eigenfunction with unit eigenvalue can identify the region of attraction of the post-fault stable equilibrium. We then leverage this property to estimate the critical clearing time of a fault. We provide two data-driven methods to estimate said eigenfunction; the first method utilizes time averages over long trajectories, and the second method leverages nonparametric learning of system dynamics over reproducing kernel Hilbert spaces with short bursts of state propagation. Our methods do not require explicit knowledge of the power system model, but require a simulator that can propagate states through the power system dynamics. Numerical experiments on three power system examples demonstrate the efficacy of our method.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"162 \",\"pages\":\"Article 110307\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524005301\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005301","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了利用 Koopman 算子的单位特征函数进行电力系统暂态稳定性分析的数据驱动方法。我们证明,具有单位特征值的 Koopman 特征函数可以确定故障后稳定平衡的吸引区域。然后,我们利用这一特性来估计故障的临界清除时间。我们提供了两种数据驱动的方法来估算上述特征函数;第一种方法利用了长轨迹的时间平均值,第二种方法则利用了在重现核希尔伯特空间上对系统动态的非参数学习,以及短时间的状态传播。我们的方法不需要明确的电力系统模型知识,但需要能通过电力系统动态传播状态的模拟器。三个电力系统实例的数值实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven transient stability analysis using the Koopman operator
We present data-driven methods for power system transient stability analysis using a unit eigenfunction of the Koopman operator. We show that the Koopman eigenfunction with unit eigenvalue can identify the region of attraction of the post-fault stable equilibrium. We then leverage this property to estimate the critical clearing time of a fault. We provide two data-driven methods to estimate said eigenfunction; the first method utilizes time averages over long trajectories, and the second method leverages nonparametric learning of system dynamics over reproducing kernel Hilbert spaces with short bursts of state propagation. Our methods do not require explicit knowledge of the power system model, but require a simulator that can propagate states through the power system dynamics. Numerical experiments on three power system examples demonstrate the efficacy of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
期刊最新文献
A decentralized optimization framework for multi-MGs in distribution network considering parallel architecture Non-unit protection method for boundary-component-free MTDC systems using normalized backward traveling waves A topology-guided high-quality solution learning framework for security-constraint unit commitment based on graph convolutional network Demand-side shared energy storage pricing strategy based on stackelberg-Nash game Assessing customer-side demand response identification for optimal scheduling considering satisfaction level for microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1