{"title":"无人机测量与人工智能驱动的算法融合,为房地产良好治理原则提供支持","authors":"Pawel Tysiac , Artur Janowski , Marek Walacik","doi":"10.1016/j.jag.2024.104229","DOIUrl":null,"url":null,"abstract":"<div><div>The paper introduces an original method for effective spatial data processing, particularly important for land administration and real estate governance. This approach integrates Unmanned Aerial Vehicle (UAV) data acquisition and processing with Artificial Intelligence (AI) and Geometric Transformation algorithms. The results reveal that: (1) while the separate applications of YOLO and Hough Transform algorithms achieve building detection rates up to 77% and 83%, respectively, (2) a novel methodology is proposed to combine spatial data and assess their quality of the detected buildings by comparing the generated building polygons with existing cadastral maps. The evaluation uses a polygon-based comparison approach, which computes metrics such as Precision, Recall, F1-Score, and Accuracy based on the spatial relationships between predicted and reference building contours, (3) the weighted model showed about 7 % improvement in accuracy compared to cadastral data. This innovative approach substantially improves spatial data processing, aiding in implementing principles for real estate good governance and offering a valuable asset for various land administration applications.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104229"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV measurements and AI-driven algorithms fusion for real estate good governance principles support\",\"authors\":\"Pawel Tysiac , Artur Janowski , Marek Walacik\",\"doi\":\"10.1016/j.jag.2024.104229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper introduces an original method for effective spatial data processing, particularly important for land administration and real estate governance. This approach integrates Unmanned Aerial Vehicle (UAV) data acquisition and processing with Artificial Intelligence (AI) and Geometric Transformation algorithms. The results reveal that: (1) while the separate applications of YOLO and Hough Transform algorithms achieve building detection rates up to 77% and 83%, respectively, (2) a novel methodology is proposed to combine spatial data and assess their quality of the detected buildings by comparing the generated building polygons with existing cadastral maps. The evaluation uses a polygon-based comparison approach, which computes metrics such as Precision, Recall, F1-Score, and Accuracy based on the spatial relationships between predicted and reference building contours, (3) the weighted model showed about 7 % improvement in accuracy compared to cadastral data. This innovative approach substantially improves spatial data processing, aiding in implementing principles for real estate good governance and offering a valuable asset for various land administration applications.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104229\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
UAV measurements and AI-driven algorithms fusion for real estate good governance principles support
The paper introduces an original method for effective spatial data processing, particularly important for land administration and real estate governance. This approach integrates Unmanned Aerial Vehicle (UAV) data acquisition and processing with Artificial Intelligence (AI) and Geometric Transformation algorithms. The results reveal that: (1) while the separate applications of YOLO and Hough Transform algorithms achieve building detection rates up to 77% and 83%, respectively, (2) a novel methodology is proposed to combine spatial data and assess their quality of the detected buildings by comparing the generated building polygons with existing cadastral maps. The evaluation uses a polygon-based comparison approach, which computes metrics such as Precision, Recall, F1-Score, and Accuracy based on the spatial relationships between predicted and reference building contours, (3) the weighted model showed about 7 % improvement in accuracy compared to cadastral data. This innovative approach substantially improves spatial data processing, aiding in implementing principles for real estate good governance and offering a valuable asset for various land administration applications.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.