基于动态世界等级概率数据的森林干扰类型归属:缅甸案例研究

Zhe Li , Tetsuji Ota , Nobuya Mizoue
{"title":"基于动态世界等级概率数据的森林干扰类型归属:缅甸案例研究","authors":"Zhe Li ,&nbsp;Tetsuji Ota ,&nbsp;Nobuya Mizoue","doi":"10.1016/j.jag.2024.104216","DOIUrl":null,"url":null,"abstract":"<div><div>Attribution of forest disturbance types using satellite remote sensing is practicable and several methods have been developed to automate the procedure. However, limited by commonly used data and the methodology, achieving accurate and rapid attribution of forest disturbance types over broad spatial extents remains challenging. In this study, we developed a method for attributing forest disturbance types using Dynamic World class probability data (i.e., probabilities for Dynamic World land use land cover types). Specifically, we first obtained a high-quality probability time series by pre-processing the class probability data. Then, we segmented the entire time series into several subseries and classified them according to the hypothetical trajectories. Finally, we completed the attribution of forest disturbance types using the variables derived from the probability time series and the results of the subseries classification. We used the developed method to investigate the forest disturbance types in Myanmar from 2017 to 2023 and validated its effectiveness by conducting unbiased accuracy assessment. The overall accuracy of the type for the acquired map was approximately 93.3%, and the overall accuracy of the year was approximately 96.7%, proving that the method is feasible. This method is based on the Google Earth Engine, which allows users to attribute forest disturbance types in different areas rapidly by simple parameter adjustments. Even if available classes do not satisfy users’ needs, the method can facilitate more detailed attribution of disturbance types.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104216"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attribution of forest disturbance types based on the Dynamic World class probability data: A case study of Myanmar\",\"authors\":\"Zhe Li ,&nbsp;Tetsuji Ota ,&nbsp;Nobuya Mizoue\",\"doi\":\"10.1016/j.jag.2024.104216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Attribution of forest disturbance types using satellite remote sensing is practicable and several methods have been developed to automate the procedure. However, limited by commonly used data and the methodology, achieving accurate and rapid attribution of forest disturbance types over broad spatial extents remains challenging. In this study, we developed a method for attributing forest disturbance types using Dynamic World class probability data (i.e., probabilities for Dynamic World land use land cover types). Specifically, we first obtained a high-quality probability time series by pre-processing the class probability data. Then, we segmented the entire time series into several subseries and classified them according to the hypothetical trajectories. Finally, we completed the attribution of forest disturbance types using the variables derived from the probability time series and the results of the subseries classification. We used the developed method to investigate the forest disturbance types in Myanmar from 2017 to 2023 and validated its effectiveness by conducting unbiased accuracy assessment. The overall accuracy of the type for the acquired map was approximately 93.3%, and the overall accuracy of the year was approximately 96.7%, proving that the method is feasible. This method is based on the Google Earth Engine, which allows users to attribute forest disturbance types in different areas rapidly by simple parameter adjustments. Even if available classes do not satisfy users’ needs, the method can facilitate more detailed attribution of disturbance types.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104216\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

利用卫星遥感技术确定森林干扰类型是切实可行的,目前已开发出几种方法来实现这一程序的自动化。然而,受限于常用数据和方法,要在广阔的空间范围内准确、快速地归属森林干扰类型仍具有挑战性。在本研究中,我们开发了一种利用动态世界类概率数据(即动态世界土地利用土地覆被类型的概率)归因森林干扰类型的方法。具体来说,我们首先通过预处理类概率数据获得高质量的概率时间序列。然后,我们将整个时间序列分割成若干子序列,并根据假设轨迹对它们进行分类。最后,我们利用从概率时间序列和子序列分类结果中得出的变量完成了森林干扰类型的归属。我们使用所开发的方法调查了缅甸 2017 年至 2023 年的森林干扰类型,并通过无偏准确性评估验证了该方法的有效性。获取地图的类型总体准确率约为 93.3%,年度总体准确率约为 96.7%,证明了该方法的可行性。该方法基于谷歌地球引擎,用户只需通过简单的参数调整,就能快速对不同地区的森林干扰类型进行归因。即使现有的类别不能满足用户的需求,该方法也能帮助用户对干扰类型进行更详细的归因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attribution of forest disturbance types based on the Dynamic World class probability data: A case study of Myanmar
Attribution of forest disturbance types using satellite remote sensing is practicable and several methods have been developed to automate the procedure. However, limited by commonly used data and the methodology, achieving accurate and rapid attribution of forest disturbance types over broad spatial extents remains challenging. In this study, we developed a method for attributing forest disturbance types using Dynamic World class probability data (i.e., probabilities for Dynamic World land use land cover types). Specifically, we first obtained a high-quality probability time series by pre-processing the class probability data. Then, we segmented the entire time series into several subseries and classified them according to the hypothetical trajectories. Finally, we completed the attribution of forest disturbance types using the variables derived from the probability time series and the results of the subseries classification. We used the developed method to investigate the forest disturbance types in Myanmar from 2017 to 2023 and validated its effectiveness by conducting unbiased accuracy assessment. The overall accuracy of the type for the acquired map was approximately 93.3%, and the overall accuracy of the year was approximately 96.7%, proving that the method is feasible. This method is based on the Google Earth Engine, which allows users to attribute forest disturbance types in different areas rapidly by simple parameter adjustments. Even if available classes do not satisfy users’ needs, the method can facilitate more detailed attribution of disturbance types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Combining readily available population and land cover maps to generate non-residential built-up labels to train Sentinel-2 image segmentation models An intercomparison of national and global land use and land cover products for Fiji The illusion of success: Test set disproportion causes inflated accuracy in remote sensing mapping research Multispectral imaging and terrestrial laser scanning for the detection of drought-induced paraheliotropic leaf movement in soybean DeLA: An extremely faster network with decoupled local aggregation for large scale point cloud learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1