Bruno R.O. Floriano , Benjamin Hanson , Thomas Bewley , João Y. Ishihara , Henrique C. Ferreira
{"title":"利用浮力控制气球群协调飓风监测系统的新政策,在通信和覆盖范围之间进行权衡","authors":"Bruno R.O. Floriano , Benjamin Hanson , Thomas Bewley , João Y. Ishihara , Henrique C. Ferreira","doi":"10.1016/j.engappai.2024.109495","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel architecture for hurricane monitoring aimed at maximizing the collection of critical data to enhance the accuracy of weather predictions. The proposed system deploys a swarm of controllable balloons equipped with meteorological sensors within the hurricane environment. A key challenge in this setup is managing the trade-off between maximizing area coverage for data collection and maintaining robust communication links among the balloons. To address this challenge, we propose a cost function with two conflicting components: one prioritizes area coverage, and the other focuses on repositioning to maintain communication. This cost function is optimized using an adaptive neural network-based model predictive control strategy, which enables the system to dynamically balance these competing requirements in real-time. Quantitative results from extensive simulations demonstrate the versatility and effectiveness of the proposed architecture, showing that it can achieve comprehensive communication connectivity and increased area coverage across various configurations, including different numbers of balloons and operational periods.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel policy for coordinating a hurricane monitoring system using a swarm of buoyancy-controlled balloons trading off communication and coverage\",\"authors\":\"Bruno R.O. Floriano , Benjamin Hanson , Thomas Bewley , João Y. Ishihara , Henrique C. Ferreira\",\"doi\":\"10.1016/j.engappai.2024.109495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel architecture for hurricane monitoring aimed at maximizing the collection of critical data to enhance the accuracy of weather predictions. The proposed system deploys a swarm of controllable balloons equipped with meteorological sensors within the hurricane environment. A key challenge in this setup is managing the trade-off between maximizing area coverage for data collection and maintaining robust communication links among the balloons. To address this challenge, we propose a cost function with two conflicting components: one prioritizes area coverage, and the other focuses on repositioning to maintain communication. This cost function is optimized using an adaptive neural network-based model predictive control strategy, which enables the system to dynamically balance these competing requirements in real-time. Quantitative results from extensive simulations demonstrate the versatility and effectiveness of the proposed architecture, showing that it can achieve comprehensive communication connectivity and increased area coverage across various configurations, including different numbers of balloons and operational periods.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016531\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016531","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A novel policy for coordinating a hurricane monitoring system using a swarm of buoyancy-controlled balloons trading off communication and coverage
This paper introduces a novel architecture for hurricane monitoring aimed at maximizing the collection of critical data to enhance the accuracy of weather predictions. The proposed system deploys a swarm of controllable balloons equipped with meteorological sensors within the hurricane environment. A key challenge in this setup is managing the trade-off between maximizing area coverage for data collection and maintaining robust communication links among the balloons. To address this challenge, we propose a cost function with two conflicting components: one prioritizes area coverage, and the other focuses on repositioning to maintain communication. This cost function is optimized using an adaptive neural network-based model predictive control strategy, which enables the system to dynamically balance these competing requirements in real-time. Quantitative results from extensive simulations demonstrate the versatility and effectiveness of the proposed architecture, showing that it can achieve comprehensive communication connectivity and increased area coverage across various configurations, including different numbers of balloons and operational periods.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.