机器学习在船舶、近海和油气腐蚀研究中的重要分析,第一部分:腐蚀检测和分类

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL Ocean Engineering Pub Date : 2024-10-29 DOI:10.1016/j.oceaneng.2024.119600
Mahadi Hasan Imran (Md) , Mohammad Ilyas Khan , Shahrizan Jamaludin , Ibnul Hasan (Md) , Mohammad Fadhli Bin Ahmad , Ahmad Faisal Mohamad Ayob , Wan Mohd Norsani bin Wan Nik , Mohammed Ismail Russtam Suhrab , Mohammad Fakhratul Ridwan Bin Zulkifli , Nurafnida Binti Afrizal , Sayyid Zainal Abidin Bin Syed Ahmad
{"title":"机器学习在船舶、近海和油气腐蚀研究中的重要分析,第一部分:腐蚀检测和分类","authors":"Mahadi Hasan Imran (Md) ,&nbsp;Mohammad Ilyas Khan ,&nbsp;Shahrizan Jamaludin ,&nbsp;Ibnul Hasan (Md) ,&nbsp;Mohammad Fadhli Bin Ahmad ,&nbsp;Ahmad Faisal Mohamad Ayob ,&nbsp;Wan Mohd Norsani bin Wan Nik ,&nbsp;Mohammed Ismail Russtam Suhrab ,&nbsp;Mohammad Fakhratul Ridwan Bin Zulkifli ,&nbsp;Nurafnida Binti Afrizal ,&nbsp;Sayyid Zainal Abidin Bin Syed Ahmad","doi":"10.1016/j.oceaneng.2024.119600","DOIUrl":null,"url":null,"abstract":"<div><div>Corrosion poses a significant threat to the integrity and longevity of ship, offshore, and oil &amp; gas structures, resulting in substantial economic losses, environmental hazards, and safety concerns. In recent years, machine learning (ML) has emerged as a promising tool for corrosion analysis in maritime industry. This paper provides a critical review of prevalent ML approaches, including Convolutional Neural Networks (CNNs), Random Forests (RFs), computer vision, image processing techniques, and hybrid models in corrosion detection and classification from 2018 to 2024. Beyond a typical review, this study meticulously examines these approaches, focusing on model development, efficacy, limitations, and practical implementation challenges in details. Key findings reveal that while ML models hold considerable potential to enhance the efficiency of corrosion detection and classification, significant barriers such as data quality, model interpretability, and integration into existing maintenance workflows impede widespread adoption. Furthermore, the paper identifies best practices and proposes future research directions to bolster the robustness and reliability of ML models in corrosion analysis. The insights gleaned from this review aim to guide industry experts and academicians in developing more effective corrosion management strategies through the integration of machine learning, ultimately mitigating the impact of corrosion on maritime and offshore operations.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A critical analysis of machine learning in ship, offshore, and oil & gas corrosion research, part I: Corrosion detection and classification\",\"authors\":\"Mahadi Hasan Imran (Md) ,&nbsp;Mohammad Ilyas Khan ,&nbsp;Shahrizan Jamaludin ,&nbsp;Ibnul Hasan (Md) ,&nbsp;Mohammad Fadhli Bin Ahmad ,&nbsp;Ahmad Faisal Mohamad Ayob ,&nbsp;Wan Mohd Norsani bin Wan Nik ,&nbsp;Mohammed Ismail Russtam Suhrab ,&nbsp;Mohammad Fakhratul Ridwan Bin Zulkifli ,&nbsp;Nurafnida Binti Afrizal ,&nbsp;Sayyid Zainal Abidin Bin Syed Ahmad\",\"doi\":\"10.1016/j.oceaneng.2024.119600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Corrosion poses a significant threat to the integrity and longevity of ship, offshore, and oil &amp; gas structures, resulting in substantial economic losses, environmental hazards, and safety concerns. In recent years, machine learning (ML) has emerged as a promising tool for corrosion analysis in maritime industry. This paper provides a critical review of prevalent ML approaches, including Convolutional Neural Networks (CNNs), Random Forests (RFs), computer vision, image processing techniques, and hybrid models in corrosion detection and classification from 2018 to 2024. Beyond a typical review, this study meticulously examines these approaches, focusing on model development, efficacy, limitations, and practical implementation challenges in details. Key findings reveal that while ML models hold considerable potential to enhance the efficiency of corrosion detection and classification, significant barriers such as data quality, model interpretability, and integration into existing maintenance workflows impede widespread adoption. Furthermore, the paper identifies best practices and proposes future research directions to bolster the robustness and reliability of ML models in corrosion analysis. The insights gleaned from this review aim to guide industry experts and academicians in developing more effective corrosion management strategies through the integration of machine learning, ultimately mitigating the impact of corrosion on maritime and offshore operations.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002980182402938X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002980182402938X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

腐蚀对船舶、近海和油气结构的完整性和使用寿命构成重大威胁,造成巨大的经济损失、环境危害和安全问题。近年来,机器学习(ML)已成为海运业腐蚀分析中一种前景广阔的工具。本文对 2018 年至 2024 年卷积神经网络 (CNN)、随机森林 (RF)、计算机视觉、图像处理技术和混合模型等流行的 ML 方法在腐蚀检测和分类中的应用进行了深入评述。除了典型的综述之外,本研究还对这些方法进行了细致的研究,重点详细介绍了模型的开发、功效、局限性和实际实施中的挑战。主要研究结果表明,虽然 ML 模型在提高腐蚀检测和分类效率方面具有相当大的潜力,但数据质量、模型可解释性以及与现有维护工作流程的集成等重大障碍阻碍了其广泛采用。此外,本文还确定了最佳实践,并提出了未来的研究方向,以增强 ML 模型在腐蚀分析中的稳健性和可靠性。从本综述中收集到的见解旨在指导行业专家和学者通过整合机器学习来制定更有效的腐蚀管理策略,最终减轻腐蚀对海事和近海作业的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A critical analysis of machine learning in ship, offshore, and oil & gas corrosion research, part I: Corrosion detection and classification
Corrosion poses a significant threat to the integrity and longevity of ship, offshore, and oil & gas structures, resulting in substantial economic losses, environmental hazards, and safety concerns. In recent years, machine learning (ML) has emerged as a promising tool for corrosion analysis in maritime industry. This paper provides a critical review of prevalent ML approaches, including Convolutional Neural Networks (CNNs), Random Forests (RFs), computer vision, image processing techniques, and hybrid models in corrosion detection and classification from 2018 to 2024. Beyond a typical review, this study meticulously examines these approaches, focusing on model development, efficacy, limitations, and practical implementation challenges in details. Key findings reveal that while ML models hold considerable potential to enhance the efficiency of corrosion detection and classification, significant barriers such as data quality, model interpretability, and integration into existing maintenance workflows impede widespread adoption. Furthermore, the paper identifies best practices and proposes future research directions to bolster the robustness and reliability of ML models in corrosion analysis. The insights gleaned from this review aim to guide industry experts and academicians in developing more effective corrosion management strategies through the integration of machine learning, ultimately mitigating the impact of corrosion on maritime and offshore operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
期刊最新文献
Survey of AI-driven routing protocols in underwater acoustic networks for enhanced communication efficiency Enhanced digital twin framework for real-time prediction of fatigue damage on semi-submersible platforms under long-term multi-sea conditions Real-time prediction of full-scale ship maneuvering motions at sea under random rudder actions based on BiLSTM-SAT hybrid method Data-driven model assessment: A comparative study for ship response determination Numerical study of the effect of vegetation submerged ratio on turbulence characteristics in sediment-laden flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1