Yang-Yang Li;Huai-Ci Zhao;Peng-Fei Liu;Guo-Gang Wang
{"title":"利用变量推理和小波树结构解决反向散射问题的贝叶斯压缩传感技术","authors":"Yang-Yang Li;Huai-Ci Zhao;Peng-Fei Liu;Guo-Gang Wang","doi":"10.1109/TAP.2024.3461175","DOIUrl":null,"url":null,"abstract":"The inverse scattering problems (ISPs) refer to reconstructing properties of unknown scatterers from measured scattered fields, and their solving process is inherently complex and fraught with various difficulties. In response to these challenges, a solver operating in a Bayesian compressive sensing (BCS) manner is proposed, which uses variational inference, wavelet tree structure, and an improved linear relationship. Specifically, the BCS enables sparsity regularization; the improved linear relationship possessing cross-validation information (CVI) is designed to reduce error propagation and enable the solver to work in an iterative manner; the utilization of a wavelet tree structure based on discrete wavelet transform (DWT) can implement sparse coding and provide more prior information; variational inference is exploited to estimate parameters and hyperparameters in the BCS manner. Theoretical analysis and representative numerical results from synthetic and experimental data demonstrate that the proposed solver showcases superior performance when compared with other competitive solvers based on a BCS manner or contrast source inversion (CSI), especially in reconstructing complex configurations characterized by nonsparse and nonweak scatterers.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 11","pages":"8750-8761"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Compressive Sensing With Variational Inference and Wavelet Tree Structure for Solving Inverse Scattering Problems\",\"authors\":\"Yang-Yang Li;Huai-Ci Zhao;Peng-Fei Liu;Guo-Gang Wang\",\"doi\":\"10.1109/TAP.2024.3461175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inverse scattering problems (ISPs) refer to reconstructing properties of unknown scatterers from measured scattered fields, and their solving process is inherently complex and fraught with various difficulties. In response to these challenges, a solver operating in a Bayesian compressive sensing (BCS) manner is proposed, which uses variational inference, wavelet tree structure, and an improved linear relationship. Specifically, the BCS enables sparsity regularization; the improved linear relationship possessing cross-validation information (CVI) is designed to reduce error propagation and enable the solver to work in an iterative manner; the utilization of a wavelet tree structure based on discrete wavelet transform (DWT) can implement sparse coding and provide more prior information; variational inference is exploited to estimate parameters and hyperparameters in the BCS manner. Theoretical analysis and representative numerical results from synthetic and experimental data demonstrate that the proposed solver showcases superior performance when compared with other competitive solvers based on a BCS manner or contrast source inversion (CSI), especially in reconstructing complex configurations characterized by nonsparse and nonweak scatterers.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"72 11\",\"pages\":\"8750-8761\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10685032/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10685032/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bayesian Compressive Sensing With Variational Inference and Wavelet Tree Structure for Solving Inverse Scattering Problems
The inverse scattering problems (ISPs) refer to reconstructing properties of unknown scatterers from measured scattered fields, and their solving process is inherently complex and fraught with various difficulties. In response to these challenges, a solver operating in a Bayesian compressive sensing (BCS) manner is proposed, which uses variational inference, wavelet tree structure, and an improved linear relationship. Specifically, the BCS enables sparsity regularization; the improved linear relationship possessing cross-validation information (CVI) is designed to reduce error propagation and enable the solver to work in an iterative manner; the utilization of a wavelet tree structure based on discrete wavelet transform (DWT) can implement sparse coding and provide more prior information; variational inference is exploited to estimate parameters and hyperparameters in the BCS manner. Theoretical analysis and representative numerical results from synthetic and experimental data demonstrate that the proposed solver showcases superior performance when compared with other competitive solvers based on a BCS manner or contrast source inversion (CSI), especially in reconstructing complex configurations characterized by nonsparse and nonweak scatterers.
期刊介绍:
IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques