吡咯与卵磷脂光聚合形成纳米颗粒,通过近红外光热温和超温激活线粒体

IF 2.6 4区 化学 Q3 POLYMER SCIENCE Journal of Polymer Research Pub Date : 2024-10-30 DOI:10.1007/s10965-024-04174-2
Chih-Kuang Chen, Andrew E.-Y. Chuang
{"title":"吡咯与卵磷脂光聚合形成纳米颗粒,通过近红外光热温和超温激活线粒体","authors":"Chih-Kuang Chen,&nbsp;Andrew E.-Y. Chuang","doi":"10.1007/s10965-024-04174-2","DOIUrl":null,"url":null,"abstract":"<div><p>The development of biocompatible nanoparticles (NPs) with effective photothermal properties is essential for advancing biomedical applications. This study investigates the synthesis and characterization of lecithin-polypyrrole nanoparticles (LEC-PPy NPs) formed through near-infrared (NIR) irradiation. LEC-PPy NPs were prepared by mixing lecithin with varying concentrations of pyrrole monomer, followed by NIR irradiation to induce potential polymerization. Characterization techniques, including Dynamic Light Scattering (DLS), Zeta Potential Analysis, FTIR, XRD, and TEM, were employed. The prepared NPs demonstrated a photothermal response, reaching temperatures above around 43 °C under NIR exposure while exhibiting cell viability and minimal hemolysis. The biochemical tests of the cellular membrane potential and AHR further validate their biological response. This study highlights the implication of NIR-induced polymerization in producing biocompatible LEC-PPy NPs, which show potential for various biomedical applications. Further optimization and in vivo validation are necessary to realize their clinical potential.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticles formation through photopolymerization of pyrrole with lecithin for enhanced mitochondrial activation via NIR-photothermal mild-hyperthermia\",\"authors\":\"Chih-Kuang Chen,&nbsp;Andrew E.-Y. Chuang\",\"doi\":\"10.1007/s10965-024-04174-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of biocompatible nanoparticles (NPs) with effective photothermal properties is essential for advancing biomedical applications. This study investigates the synthesis and characterization of lecithin-polypyrrole nanoparticles (LEC-PPy NPs) formed through near-infrared (NIR) irradiation. LEC-PPy NPs were prepared by mixing lecithin with varying concentrations of pyrrole monomer, followed by NIR irradiation to induce potential polymerization. Characterization techniques, including Dynamic Light Scattering (DLS), Zeta Potential Analysis, FTIR, XRD, and TEM, were employed. The prepared NPs demonstrated a photothermal response, reaching temperatures above around 43 °C under NIR exposure while exhibiting cell viability and minimal hemolysis. The biochemical tests of the cellular membrane potential and AHR further validate their biological response. This study highlights the implication of NIR-induced polymerization in producing biocompatible LEC-PPy NPs, which show potential for various biomedical applications. Further optimization and in vivo validation are necessary to realize their clinical potential.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"31 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-024-04174-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04174-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

开发具有有效光热特性的生物相容性纳米粒子(NPs)对于推进生物医学应用至关重要。本研究探讨了通过近红外(NIR)辐照形成的卵磷脂-聚吡咯纳米粒子(LEC-PPy NPs)的合成和表征。制备 LEC-PPy NPs 的方法是将卵磷脂与不同浓度的吡咯单体混合,然后用近红外照射诱导潜在聚合。表征技术包括动态光散射(DLS)、Zeta 电位分析、傅立叶变换红外光谱、XRD 和 TEM。制备的 NPs 具有光热响应,在近红外照射下温度可达到 43 ℃ 以上,同时细胞存活率高,溶血现象极少。细胞膜电位和 AHR 的生化测试进一步验证了它们的生物响应。这项研究强调了近红外诱导聚合在生产生物相容性 LEC-PPy NPs 中的意义,LEC-PPy NPs 具有各种生物医学应用的潜力。要实现其临床应用潜力,还需要进一步优化和体内验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoparticles formation through photopolymerization of pyrrole with lecithin for enhanced mitochondrial activation via NIR-photothermal mild-hyperthermia

The development of biocompatible nanoparticles (NPs) with effective photothermal properties is essential for advancing biomedical applications. This study investigates the synthesis and characterization of lecithin-polypyrrole nanoparticles (LEC-PPy NPs) formed through near-infrared (NIR) irradiation. LEC-PPy NPs were prepared by mixing lecithin with varying concentrations of pyrrole monomer, followed by NIR irradiation to induce potential polymerization. Characterization techniques, including Dynamic Light Scattering (DLS), Zeta Potential Analysis, FTIR, XRD, and TEM, were employed. The prepared NPs demonstrated a photothermal response, reaching temperatures above around 43 °C under NIR exposure while exhibiting cell viability and minimal hemolysis. The biochemical tests of the cellular membrane potential and AHR further validate their biological response. This study highlights the implication of NIR-induced polymerization in producing biocompatible LEC-PPy NPs, which show potential for various biomedical applications. Further optimization and in vivo validation are necessary to realize their clinical potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
期刊最新文献
Easily recyclable magnetic polyacrylamide/sodium alginate/Fe3O4@ZIF-8 hydrogel beads for effective removal of Congo Red Preparation and characterization of cellulose-reinforced PLA/PHA compounds Facile fabrication of PPy/MWCNTs composites with tunable dielectric properties and their superior electromagnetic wave absorbing performance Comparative mechanical and morphological characteristics of an innovative hybrid composite of vetiver and jute Microcellular foamed bilayer iPP/CNTs-HDPE/CNTs nanocomposites for electromagnetic interference shielding application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1