{"title":"研究用空气对旋转体进行湍流边界层控制的可能性的技术现状和前景(综述)","authors":"V. I. Kornilov, A. N. Popkov","doi":"10.1134/S0021894424020019","DOIUrl":null,"url":null,"abstract":"<p>Investigations (mainly those performed by the authors) of air blowing through a perforated section on a body of revolution with a large aspect ratio in an axisymmetric incompressible flow are summarized. Result of numerical and experimental studies of the flow properties, efficiency of the turbulent boundary layer control and prospects of using it for a body of revolution at low subsonic velocities equivalent to the take-off and landing regimes for a modern subsonic cargo aircraft are analyzed.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 2","pages":"183 - 201"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STATE OF ART AND PROSPECTS OF INVESTIGATING THE POSSIBILITY OF TURBULENT BOUNDARY LAYER CONTROL BY AIR BLOWING ON A BODY OF REVOLUTION (REVIEW)\",\"authors\":\"V. I. Kornilov, A. N. Popkov\",\"doi\":\"10.1134/S0021894424020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Investigations (mainly those performed by the authors) of air blowing through a perforated section on a body of revolution with a large aspect ratio in an axisymmetric incompressible flow are summarized. Result of numerical and experimental studies of the flow properties, efficiency of the turbulent boundary layer control and prospects of using it for a body of revolution at low subsonic velocities equivalent to the take-off and landing regimes for a modern subsonic cargo aircraft are analyzed.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"65 2\",\"pages\":\"183 - 201\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894424020019\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894424020019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
STATE OF ART AND PROSPECTS OF INVESTIGATING THE POSSIBILITY OF TURBULENT BOUNDARY LAYER CONTROL BY AIR BLOWING ON A BODY OF REVOLUTION (REVIEW)
Investigations (mainly those performed by the authors) of air blowing through a perforated section on a body of revolution with a large aspect ratio in an axisymmetric incompressible flow are summarized. Result of numerical and experimental studies of the flow properties, efficiency of the turbulent boundary layer control and prospects of using it for a body of revolution at low subsonic velocities equivalent to the take-off and landing regimes for a modern subsonic cargo aircraft are analyzed.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.