优化 CAR-NK 细胞的转导和扩增:利用细胞因子调节提高性能

Tiziano Ingegnere, Benjamin Segain, Adeline Cozzani, Mattias Carlsten, Suman Mitra, Silvia Gaggero
{"title":"优化 CAR-NK 细胞的转导和扩增:利用细胞因子调节提高性能","authors":"Tiziano Ingegnere,&nbsp;Benjamin Segain,&nbsp;Adeline Cozzani,&nbsp;Mattias Carlsten,&nbsp;Suman Mitra,&nbsp;Silvia Gaggero","doi":"10.1002/cpz1.70040","DOIUrl":null,"url":null,"abstract":"<p>Cellular immunotherapy has emerged as one of the most potent approaches to treating cancer patients. Adoptive transfer of chimeric antigen receptor (CAR) T cells as well as the use of haploidentical natural killer (NK) cells can induce remission in patients with lymphoma and leukemia. Although the use of CAR T cells has been established, this approach is currently limited for wider use by the risk of severe adverse events, including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Moreover, the risk of triggering graft vs host reactions in settings of allogeneic T cell infusion limits the use to autologous CAR T cells if advanced CRISPR engineering is not applied. In contrast, NK cell-based cancer immunotherapy has emerged as a safe approach even in allogeneic settings. However, efficient transduction of primary blood NK cells with vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentivirus commonly used for T cell modification remains challenging. This article presents a detailed method that significantly enhances the transduction efficiency of NK cells by utilizing a short-term culture in cytokine-supplemented medium. It also encompasses the preparation of high-titer and high-quality lentiviral particles for optimal NK cell transduction. Overall, this protocol details the step-by-step culture of NK cells in cytokine-supplemented medium, their transduction with VSV-G lentiviral vectors, and subsequent expansion for functional assays. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Isolation of NK cells from human peripheral blood mononuclear cells (PBMCs)</p><p><b>Basic Protocol 2</b>: NK cell expansion and transduction with lentivirus for generating CAR-NK cells</p><p><b>Support Protocol 1</b>: Plasmid amplification</p><p><b>Support Protocol 2</b>: Lentivirus preparation</p><p><b>Support Protocol 3</b>: Lentivirus titration</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing CAR-NK Cell Transduction and Expansion: Leveraging Cytokine Modulation for Enhanced Performance\",\"authors\":\"Tiziano Ingegnere,&nbsp;Benjamin Segain,&nbsp;Adeline Cozzani,&nbsp;Mattias Carlsten,&nbsp;Suman Mitra,&nbsp;Silvia Gaggero\",\"doi\":\"10.1002/cpz1.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellular immunotherapy has emerged as one of the most potent approaches to treating cancer patients. Adoptive transfer of chimeric antigen receptor (CAR) T cells as well as the use of haploidentical natural killer (NK) cells can induce remission in patients with lymphoma and leukemia. Although the use of CAR T cells has been established, this approach is currently limited for wider use by the risk of severe adverse events, including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Moreover, the risk of triggering graft vs host reactions in settings of allogeneic T cell infusion limits the use to autologous CAR T cells if advanced CRISPR engineering is not applied. In contrast, NK cell-based cancer immunotherapy has emerged as a safe approach even in allogeneic settings. However, efficient transduction of primary blood NK cells with vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentivirus commonly used for T cell modification remains challenging. This article presents a detailed method that significantly enhances the transduction efficiency of NK cells by utilizing a short-term culture in cytokine-supplemented medium. It also encompasses the preparation of high-titer and high-quality lentiviral particles for optimal NK cell transduction. Overall, this protocol details the step-by-step culture of NK cells in cytokine-supplemented medium, their transduction with VSV-G lentiviral vectors, and subsequent expansion for functional assays. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Isolation of NK cells from human peripheral blood mononuclear cells (PBMCs)</p><p><b>Basic Protocol 2</b>: NK cell expansion and transduction with lentivirus for generating CAR-NK cells</p><p><b>Support Protocol 1</b>: Plasmid amplification</p><p><b>Support Protocol 2</b>: Lentivirus preparation</p><p><b>Support Protocol 3</b>: Lentivirus titration</p>\",\"PeriodicalId\":93970,\"journal\":{\"name\":\"Current protocols\",\"volume\":\"4 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞免疫疗法已成为治疗癌症患者最有效的方法之一。嵌合抗原受体(CAR)T 细胞的适应性转移以及单倍体自然杀伤(NK)细胞的使用可诱导淋巴瘤和白血病患者病情缓解。虽然 CAR T 细胞的应用已经确立,但由于存在严重不良事件的风险,包括细胞因子释放综合征和免疫效应细胞相关神经毒性综合征,目前这种方法的广泛应用受到限制。此外,如果不采用先进的 CRISPR 工程,异体 T 细胞输注引发移植物与宿主反应的风险也限制了自体 CAR T 细胞的使用。相比之下,基于 NK 细胞的癌症免疫疗法已成为一种安全的方法,即使在异体治疗中也是如此。然而,用T细胞修饰常用的水泡性口炎病毒G糖蛋白(VSV-G)伪型慢病毒高效转导原代血液NK细胞仍具有挑战性。本文介绍了一种详细的方法,通过在细胞因子补充培养基中进行短期培养,大大提高了 NK 细胞的转导效率。它还包括制备高滴度和高质量的慢病毒颗粒,以实现最佳的 NK 细胞转导。总之,本方案详细介绍了在细胞因子补充培养基中逐步培养 NK 细胞、用 VSV-G 慢病毒载体转导 NK 细胞以及随后扩增 NK 细胞进行功能测试的过程。© 2024 Wiley Periodicals LLC.基本方案 1:从人外周血单核细胞(PBMCs)中分离 NK 细胞基本方案 2:扩增 NK 细胞并用慢病毒转导生成 CAR-NK 细胞辅助方案 1:质粒扩增辅助方案 2:慢病毒制备辅助方案 3:慢病毒滴定
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing CAR-NK Cell Transduction and Expansion: Leveraging Cytokine Modulation for Enhanced Performance

Cellular immunotherapy has emerged as one of the most potent approaches to treating cancer patients. Adoptive transfer of chimeric antigen receptor (CAR) T cells as well as the use of haploidentical natural killer (NK) cells can induce remission in patients with lymphoma and leukemia. Although the use of CAR T cells has been established, this approach is currently limited for wider use by the risk of severe adverse events, including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Moreover, the risk of triggering graft vs host reactions in settings of allogeneic T cell infusion limits the use to autologous CAR T cells if advanced CRISPR engineering is not applied. In contrast, NK cell-based cancer immunotherapy has emerged as a safe approach even in allogeneic settings. However, efficient transduction of primary blood NK cells with vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentivirus commonly used for T cell modification remains challenging. This article presents a detailed method that significantly enhances the transduction efficiency of NK cells by utilizing a short-term culture in cytokine-supplemented medium. It also encompasses the preparation of high-titer and high-quality lentiviral particles for optimal NK cell transduction. Overall, this protocol details the step-by-step culture of NK cells in cytokine-supplemented medium, their transduction with VSV-G lentiviral vectors, and subsequent expansion for functional assays. © 2024 Wiley Periodicals LLC.

Basic Protocol 1: Isolation of NK cells from human peripheral blood mononuclear cells (PBMCs)

Basic Protocol 2: NK cell expansion and transduction with lentivirus for generating CAR-NK cells

Support Protocol 1: Plasmid amplification

Support Protocol 2: Lentivirus preparation

Support Protocol 3: Lentivirus titration

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Expression and Purification of SARS-related Spike Glycoproteins for Cryo-EM Analysis A Physiologically Relevant In Vitro Model of Nonreplicating Persistent Mycobacterium tuberculosis in Caseum Optimized, Efficient Measurement of the Expression of Undifferentiated Stem Cell Markers in Human Induced Pluripotent Stem Cells (iPSCs) by Flow Cytometry Development, Characterization, and Therapeutic Utility of Paclitaxel-Resistant Breast and Gastric Cancer In Vitro and In Vivo Models Imaging the Intestinal Transcriptome With Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1