Weiqin Sun, Xiao-Jia Zhang, Anton V. Artemyev, Didier Mourenas, Steven K. Morley, Vassilis Angelopoulos, S. Kasahara, Y. Miyoshi, A. Matsuoka, T. Mitani, S. Yokota, T. Hori, K. Keika, T. Takashima, M. Teramoto, I. Shinohara, K. Yamamoto
{"title":"ELFIN-GPS 高能电子通量比较:对赤道磁层的低空电子通量绘图建模","authors":"Weiqin Sun, Xiao-Jia Zhang, Anton V. Artemyev, Didier Mourenas, Steven K. Morley, Vassilis Angelopoulos, S. Kasahara, Y. Miyoshi, A. Matsuoka, T. Mitani, S. Yokota, T. Hori, K. Keika, T. Takashima, M. Teramoto, I. Shinohara, K. Yamamoto","doi":"10.1029/2024JA033155","DOIUrl":null,"url":null,"abstract":"<p>Near-equatorial measurements of energetic electron fluxes, in combination with numerical simulation, are widely used for monitoring of the radiation belt dynamics. However, the long orbital periods of near-equatorial spacecraft constrain the cadence of observations to once per several hours or greater, that is, much longer than the mesoscale injections and rapid local acceleration and losses of energetic electrons of interest. An alternative approach for radiation belt monitoring is to use measurements of low-altitude spacecraft, which cover, once per hour or faster, the latitudinal range of the entire radiation belt within a few minutes. Such an approach requires, however, a procedure for mapping the flux from low equatorial pitch angles (near the loss cone) as measured at low altitude, to high equatorial pitch angles (far from the loss cone), as necessitated by equatorial flux models. Here we do this using the high energy resolution ELFIN measurements of energetic electrons. Combining those with GPS measurements we develop a model for the electron anisotropy coefficient, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, that describes electron flux <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>j</mi>\n <mi>trap</mi>\n </msub>\n </mrow>\n <annotation> ${j}_{\\mathit{trap}}$</annotation>\n </semantics></math> dependence on equatorial pitch-angle, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>α</mi>\n <mrow>\n <mi>e</mi>\n <mi>q</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\alpha }_{eq}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>j</mi>\n <mi>trap</mi>\n </msub>\n <mo>∼</mo>\n <msup>\n <mi>sin</mi>\n <mi>n</mi>\n </msup>\n <msub>\n <mi>α</mi>\n <mrow>\n <mi>e</mi>\n <mi>q</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${j}_{\\mathit{trap}}\\sim {\\sin }^{n}{\\alpha }_{eq}$</annotation>\n </semantics></math>. We then validate this model by comparing its equatorial predictions from ELFIN with in-situ near-equatorial measurements from Arase (ERG) in the outer radiation belt.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ELFIN-GPS Comparison of Energetic Electron Fluxes: Modeling Low-Altitude Electron Flux Mapping to the Equatorial Magnetosphere\",\"authors\":\"Weiqin Sun, Xiao-Jia Zhang, Anton V. Artemyev, Didier Mourenas, Steven K. Morley, Vassilis Angelopoulos, S. Kasahara, Y. Miyoshi, A. Matsuoka, T. Mitani, S. Yokota, T. Hori, K. Keika, T. Takashima, M. Teramoto, I. Shinohara, K. Yamamoto\",\"doi\":\"10.1029/2024JA033155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Near-equatorial measurements of energetic electron fluxes, in combination with numerical simulation, are widely used for monitoring of the radiation belt dynamics. However, the long orbital periods of near-equatorial spacecraft constrain the cadence of observations to once per several hours or greater, that is, much longer than the mesoscale injections and rapid local acceleration and losses of energetic electrons of interest. An alternative approach for radiation belt monitoring is to use measurements of low-altitude spacecraft, which cover, once per hour or faster, the latitudinal range of the entire radiation belt within a few minutes. Such an approach requires, however, a procedure for mapping the flux from low equatorial pitch angles (near the loss cone) as measured at low altitude, to high equatorial pitch angles (far from the loss cone), as necessitated by equatorial flux models. Here we do this using the high energy resolution ELFIN measurements of energetic electrons. Combining those with GPS measurements we develop a model for the electron anisotropy coefficient, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, that describes electron flux <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>j</mi>\\n <mi>trap</mi>\\n </msub>\\n </mrow>\\n <annotation> ${j}_{\\\\mathit{trap}}$</annotation>\\n </semantics></math> dependence on equatorial pitch-angle, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>α</mi>\\n <mrow>\\n <mi>e</mi>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\alpha }_{eq}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>j</mi>\\n <mi>trap</mi>\\n </msub>\\n <mo>∼</mo>\\n <msup>\\n <mi>sin</mi>\\n <mi>n</mi>\\n </msup>\\n <msub>\\n <mi>α</mi>\\n <mrow>\\n <mi>e</mi>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${j}_{\\\\mathit{trap}}\\\\sim {\\\\sin }^{n}{\\\\alpha }_{eq}$</annotation>\\n </semantics></math>. We then validate this model by comparing its equatorial predictions from ELFIN with in-situ near-equatorial measurements from Arase (ERG) in the outer radiation belt.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033155\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033155","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
对高能电子通量的近赤道测量与数值模拟相结合,广泛用于监测辐射带的动态。然而,由于近赤道航天器的轨道周期较长,因此观测频率只能为每几小时或更长时间观测一次,也就是说,观测时间远远长于中尺度注入和高能电子的快速局部加速和损耗。辐射带监测的另一种方法是利用低空航天器的测量,每小时一次或更快,在几分钟内覆盖整个辐射带的纬度范围。然而,这种方法需要一个程序,将在低空测量到的低赤道俯仰角(靠近损耗锥)的通量映射到高赤道俯仰角(远离损耗锥),这是赤道通量模型所必需的。在这里,我们利用高能电子的高能分辨率 ELFIN 测量来实现这一目标。结合全球定位系统的测量结果,我们建立了一个电子各向异性系数 n $n$ 的模型,它描述了电子通量 j trap ${j}_{mathit{trap}}$ 与赤道俯仰角 α e q ${alpha }_{eq}$ 的关系,j trap ∼ sin n α e q ${j}_{mathit{trap}}\sim {\sin }^{n}\{alpha }_{eq}$ 。然后,我们通过比较 ELFIN 的赤道预测值和 Arase (ERG) 在外层辐射带的近赤道原位测量值来验证这一模型。
ELFIN-GPS Comparison of Energetic Electron Fluxes: Modeling Low-Altitude Electron Flux Mapping to the Equatorial Magnetosphere
Near-equatorial measurements of energetic electron fluxes, in combination with numerical simulation, are widely used for monitoring of the radiation belt dynamics. However, the long orbital periods of near-equatorial spacecraft constrain the cadence of observations to once per several hours or greater, that is, much longer than the mesoscale injections and rapid local acceleration and losses of energetic electrons of interest. An alternative approach for radiation belt monitoring is to use measurements of low-altitude spacecraft, which cover, once per hour or faster, the latitudinal range of the entire radiation belt within a few minutes. Such an approach requires, however, a procedure for mapping the flux from low equatorial pitch angles (near the loss cone) as measured at low altitude, to high equatorial pitch angles (far from the loss cone), as necessitated by equatorial flux models. Here we do this using the high energy resolution ELFIN measurements of energetic electrons. Combining those with GPS measurements we develop a model for the electron anisotropy coefficient, , that describes electron flux dependence on equatorial pitch-angle, , . We then validate this model by comparing its equatorial predictions from ELFIN with in-situ near-equatorial measurements from Arase (ERG) in the outer radiation belt.