范艾伦探测器时代地球外部辐射带在地磁风暴阶段的演变

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2024-10-28 DOI:10.1029/2024JA032674
Xu Wang, Lei Dai, Ren Yong, Senlin Xiong, Chi Wang
{"title":"范艾伦探测器时代地球外部辐射带在地磁风暴阶段的演变","authors":"Xu Wang,&nbsp;Lei Dai,&nbsp;Ren Yong,&nbsp;Senlin Xiong,&nbsp;Chi Wang","doi":"10.1029/2024JA032674","DOIUrl":null,"url":null,"abstract":"<p>Earth's outer radiation belts are highly dynamic during geomagnetic storms. Using electron flux data from 226 keV to 2.6 MeV measured by the Van Allen Probes, we statistically analyzed the peak flux position <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>L</mi>\n <mi>peak</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({L}_{\\mathit{peak}}\\right)$</annotation>\n </semantics></math> and inner boundary position <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>L</mi>\n <mi>min</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({L}_{\\min }\\right)$</annotation>\n </semantics></math> of the outer radiation belt across different storm phases: pre-storm quiet time, main phase, early recovery phase, and later recovery phase. This analysis covered 196 geomagnetic storm events from October 2012 to September 2019. Our results indicate that: (a) During the pre-storm, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>peak</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\mathit{peak}}$</annotation>\n </semantics></math> decreases with increasing energy. From the pre-storm to the early recovery phase, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>peak</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\mathit{peak}}$</annotation>\n </semantics></math> shifts inward for energies below 1 MeV and outward for energies above 1 MeV. For all energies, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>peak</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\mathit{peak}}$</annotation>\n </semantics></math> converges to approximately L = <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>4.3–4.6 in the early recovery phase. (b) Below approximately 1 MeV, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>min</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\min }$</annotation>\n </semantics></math> generally move inward from the main phase to the early recovery phase. Above 1 MeV, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>min</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\min }$</annotation>\n </semantics></math> remains nearly unchanged across different storm phases. (c) The half-width (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>peak</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\mathit{peak}}$</annotation>\n </semantics></math>−<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>min</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\min }$</annotation>\n </semantics></math>) of the outer belt decreases during the main phase for energies below 1 MeV and increases during the recovery phase for energies above 1.5 MeV. (d) In the early recovery phase, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>peak</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\mathit{peak}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>min</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\min }$</annotation>\n </semantics></math> at 593–742 keV show a moderate correlation with storm intensity (<span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n </mrow>\n <annotation> $\\vert $</annotation>\n </semantics></math>CC<span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mo>∼</mo>\n </mrow>\n <annotation> $\\vert \\sim $</annotation>\n </semantics></math> 0.7–0.8), while <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>peak</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\mathit{peak}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>min</mi>\n </msub>\n </mrow>\n <annotation> ${L}_{\\min }$</annotation>\n </semantics></math> at energies greater than 1.1 MeV exhibit low correlations (<span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n </mrow>\n <annotation> $\\vert $</annotation>\n </semantics></math>CC<span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mo>≤</mo>\n <mo>∼</mo>\n </mrow>\n <annotation> $\\vert \\le \\sim $</annotation>\n </semantics></math>0.4) during each phase. These results confirm the complex, energy-dependent morphology of the outer radiation belt throughout geomagnetic storm phases.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Evolution of Earth's Outer Radiation Belt Over Geomagnetic Storm Phase in Van Allen Probe Era\",\"authors\":\"Xu Wang,&nbsp;Lei Dai,&nbsp;Ren Yong,&nbsp;Senlin Xiong,&nbsp;Chi Wang\",\"doi\":\"10.1029/2024JA032674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Earth's outer radiation belts are highly dynamic during geomagnetic storms. Using electron flux data from 226 keV to 2.6 MeV measured by the Van Allen Probes, we statistically analyzed the peak flux position <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>L</mi>\\n <mi>peak</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({L}_{\\\\mathit{peak}}\\\\right)$</annotation>\\n </semantics></math> and inner boundary position <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>L</mi>\\n <mi>min</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({L}_{\\\\min }\\\\right)$</annotation>\\n </semantics></math> of the outer radiation belt across different storm phases: pre-storm quiet time, main phase, early recovery phase, and later recovery phase. This analysis covered 196 geomagnetic storm events from October 2012 to September 2019. Our results indicate that: (a) During the pre-storm, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>peak</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\mathit{peak}}$</annotation>\\n </semantics></math> decreases with increasing energy. From the pre-storm to the early recovery phase, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>peak</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\mathit{peak}}$</annotation>\\n </semantics></math> shifts inward for energies below 1 MeV and outward for energies above 1 MeV. For all energies, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>peak</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\mathit{peak}}$</annotation>\\n </semantics></math> converges to approximately L = <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>4.3–4.6 in the early recovery phase. (b) Below approximately 1 MeV, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>min</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\min }$</annotation>\\n </semantics></math> generally move inward from the main phase to the early recovery phase. Above 1 MeV, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>min</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\min }$</annotation>\\n </semantics></math> remains nearly unchanged across different storm phases. (c) The half-width (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>peak</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\mathit{peak}}$</annotation>\\n </semantics></math>−<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>min</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\min }$</annotation>\\n </semantics></math>) of the outer belt decreases during the main phase for energies below 1 MeV and increases during the recovery phase for energies above 1.5 MeV. (d) In the early recovery phase, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>peak</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\mathit{peak}}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>min</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\min }$</annotation>\\n </semantics></math> at 593–742 keV show a moderate correlation with storm intensity (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n </mrow>\\n <annotation> $\\\\vert $</annotation>\\n </semantics></math>CC<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> $\\\\vert \\\\sim $</annotation>\\n </semantics></math> 0.7–0.8), while <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>peak</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\mathit{peak}}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mi>min</mi>\\n </msub>\\n </mrow>\\n <annotation> ${L}_{\\\\min }$</annotation>\\n </semantics></math> at energies greater than 1.1 MeV exhibit low correlations (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n </mrow>\\n <annotation> $\\\\vert $</annotation>\\n </semantics></math>CC<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mo>≤</mo>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> $\\\\vert \\\\le \\\\sim $</annotation>\\n </semantics></math>0.4) during each phase. These results confirm the complex, energy-dependent morphology of the outer radiation belt throughout geomagnetic storm phases.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032674\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032674","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地球外辐射带在地磁暴期间是高度动态的。利用范艾伦探测器测量的226 keV到2.6 MeV的电子通量数据,我们统计分析了外辐射带在不同风暴阶段的峰值通量位置L peak $/left({L}_{/mathit{peak}}/right)$和内边界位置L min $/left({L}_{/min}/right)$,这些阶段包括风暴前的安静期、主要阶段、早期恢复阶段和后期恢复阶段。该分析涵盖了2012年10月至2019年9月的196个地磁暴事件。结果表明(a) 在风暴前期,L 峰值 ${L}_{mathit{peak}}$ 随着能量的增加而减小。从风暴前到早期恢复阶段,能量低于 1 MeV 时,L 峰值 ${L}_{\mathit{peak}}$ 内移,能量高于 1 MeV 时,L 峰值 ${L}_{\mathit{peak}}$ 外移。对于所有能量,在早期恢复阶段,L 峰值 ${L}_{mathit{peak}}$ 收敛到大约 L = ∼ ${\sim} $ 4.3-4.6。(b) 在大约 1 MeV 以下,L min ${L}_{\min }$ 一般从主要阶段向内移动到早期恢复阶段。在 1 MeV 以上,L min ${L}_{\min }$ 在不同风暴阶段几乎保持不变。(c) 外带的半宽(L peak ${L}_{mathit{peak}}$ - L min ${L}_{\min }$)在能量低于 1 MeV 的主要阶段减小,而在能量高于 1.5 MeV 的恢复阶段增大。(d) 在早期恢复阶段,593-742 keV的L峰值${L}_{mathit{peak}}$和L最小值${L}_{min }$与风暴强度呈中度相关(∣ $\vert $ CC ∣ ∼ $\vert \sim $ 0.7-0.8),而能量大于1.1 MeV的L峰值${L}_{mathit{peak}}$和L最小值${L}_{min }$在每个阶段的相关性较低(∣ $\vert $ CC ∣ ≤ ∼ $\vert \le \sim $ 0.4)。这些结果证实了外辐射带在整个地磁暴阶段复杂的、与能量有关的形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Evolution of Earth's Outer Radiation Belt Over Geomagnetic Storm Phase in Van Allen Probe Era

Earth's outer radiation belts are highly dynamic during geomagnetic storms. Using electron flux data from 226 keV to 2.6 MeV measured by the Van Allen Probes, we statistically analyzed the peak flux position L peak $\left({L}_{\mathit{peak}}\right)$ and inner boundary position L min $\left({L}_{\min }\right)$ of the outer radiation belt across different storm phases: pre-storm quiet time, main phase, early recovery phase, and later recovery phase. This analysis covered 196 geomagnetic storm events from October 2012 to September 2019. Our results indicate that: (a) During the pre-storm, L peak ${L}_{\mathit{peak}}$ decreases with increasing energy. From the pre-storm to the early recovery phase, L peak ${L}_{\mathit{peak}}$ shifts inward for energies below 1 MeV and outward for energies above 1 MeV. For all energies, L peak ${L}_{\mathit{peak}}$ converges to approximately L =  ${\sim} $ 4.3–4.6 in the early recovery phase. (b) Below approximately 1 MeV, L min ${L}_{\min }$ generally move inward from the main phase to the early recovery phase. Above 1 MeV, L min ${L}_{\min }$ remains nearly unchanged across different storm phases. (c) The half-width ( L peak ${L}_{\mathit{peak}}$ L min ${L}_{\min }$ ) of the outer belt decreases during the main phase for energies below 1 MeV and increases during the recovery phase for energies above 1.5 MeV. (d) In the early recovery phase, L peak ${L}_{\mathit{peak}}$ and L min ${L}_{\min }$ at 593–742 keV show a moderate correlation with storm intensity ( $\vert $ CC $\vert \sim $ 0.7–0.8), while L peak ${L}_{\mathit{peak}}$ and L min ${L}_{\min }$ at energies greater than 1.1 MeV exhibit low correlations ( $\vert $ CC $\vert \le \sim $ 0.4) during each phase. These results confirm the complex, energy-dependent morphology of the outer radiation belt throughout geomagnetic storm phases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Calculation and Evaluation of Neutral Winds in the Lower Thermosphere Based on SYISR Observations Solar Activity Effects on the Near-Earth Space Regions During the Descending Phase of Solar Cycle 24 Nocturnal Sporadic Cusp-Type Layer (Esc) Resulting From Anomalous Excess Ionization Over the SAMA Region During the Extreme Magnetic Storm on 11 May 2024 The Curvature of TEC as a Proxy for Ionospheric Amplitude Scintillation Near-Real-Time Identification of the Source of Ionospheric Disturbances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1