Jesper Eisfeldt, Adam Ameur, Felix Lenner, Esmee Ten Berk de Boer, Marlene Ek, Josephine Wincent, Raquel Vaz, Jesper Ottosson, Tord Jonson, Sofie Ivarsson, Sofia Thunström, Alexandra Topa, Simon Stenberg, Anna Rohlin, Anna Sandestig, Margareta Nordling, Pia Palmebäck, Magnus Burstedt, Frida Nordin, Eva-Lena Stattin, Maria Sobol, Panagiotis Baliakas, Marie-Louise Bondeson, Ida Höijer, Kristine Bilgrav Saether, Lovisa Lovmar, Hans Ehrencrona, Malin Melin, Lars Feuk, Anna Lindstrand
{"title":"全国性染色体重排长读测序研究揭示了隐藏的复杂性","authors":"Jesper Eisfeldt, Adam Ameur, Felix Lenner, Esmee Ten Berk de Boer, Marlene Ek, Josephine Wincent, Raquel Vaz, Jesper Ottosson, Tord Jonson, Sofie Ivarsson, Sofia Thunström, Alexandra Topa, Simon Stenberg, Anna Rohlin, Anna Sandestig, Margareta Nordling, Pia Palmebäck, Magnus Burstedt, Frida Nordin, Eva-Lena Stattin, Maria Sobol, Panagiotis Baliakas, Marie-Louise Bondeson, Ida Höijer, Kristine Bilgrav Saether, Lovisa Lovmar, Hans Ehrencrona, Malin Melin, Lars Feuk, Anna Lindstrand","doi":"10.1101/gr.279510.124","DOIUrl":null,"url":null,"abstract":"Clinical genetic laboratories often require a comprehensive analysis of chromosomal rearrangements/structural variants (SVs), from large events like translocations and inversions to supernumerary ring/marker chromosomes and small deletions or duplications. Understanding the complexity of these events and their clinical consequences requires pinpointing breakpoint junctions and resolving the derivative chromosome structure. This task often surpasses the capabilities of short-read sequencing technologies. In contrast, long-read sequencing techniques present a compelling alternative for clinical diagnostics. Here, Genomic Medicine Sweden—Rare Diseases has explored the utility of HiFi Revio long-read genome sequencing (lrGS) for digital karyotyping of SVs nationwide. The 16 samples from 13 families were collected from all Swedish healthcare regions. Prior investigations had identified 16 SVs, ranging from simple to complex rearrangements, including inversions, translocations, and copy number variants. We have established a national pipeline and a shared variant database for variant calling and filtering. Using lrGS, 14 of the 16 known SVs are detected. Of these, 13 are mapped at nucleotide resolution, and one complex rearrangement is only visible by read depth. Two Chromosome 21 rearrangements, one mosaic, remain undetected. Average read lengths are 8.3–18.8 kb with coverage exceeding 20× for all samples. De novo assembly results in a limited number of phased contigs per individual (N50 6–86 Mb), enabling direct characterization of the chromosomal rearrangements. In a national pilot study, we demonstrate the utility of HiFi Revio lrGS for analyzing chromosomal rearrangements. Based on our results, we propose a 5-year plan to expand lrGS use for rare disease diagnostics in Sweden.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"105 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A national long-read sequencing study on chromosomal rearrangements uncovers hidden complexities\",\"authors\":\"Jesper Eisfeldt, Adam Ameur, Felix Lenner, Esmee Ten Berk de Boer, Marlene Ek, Josephine Wincent, Raquel Vaz, Jesper Ottosson, Tord Jonson, Sofie Ivarsson, Sofia Thunström, Alexandra Topa, Simon Stenberg, Anna Rohlin, Anna Sandestig, Margareta Nordling, Pia Palmebäck, Magnus Burstedt, Frida Nordin, Eva-Lena Stattin, Maria Sobol, Panagiotis Baliakas, Marie-Louise Bondeson, Ida Höijer, Kristine Bilgrav Saether, Lovisa Lovmar, Hans Ehrencrona, Malin Melin, Lars Feuk, Anna Lindstrand\",\"doi\":\"10.1101/gr.279510.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinical genetic laboratories often require a comprehensive analysis of chromosomal rearrangements/structural variants (SVs), from large events like translocations and inversions to supernumerary ring/marker chromosomes and small deletions or duplications. Understanding the complexity of these events and their clinical consequences requires pinpointing breakpoint junctions and resolving the derivative chromosome structure. This task often surpasses the capabilities of short-read sequencing technologies. In contrast, long-read sequencing techniques present a compelling alternative for clinical diagnostics. Here, Genomic Medicine Sweden—Rare Diseases has explored the utility of HiFi Revio long-read genome sequencing (lrGS) for digital karyotyping of SVs nationwide. The 16 samples from 13 families were collected from all Swedish healthcare regions. Prior investigations had identified 16 SVs, ranging from simple to complex rearrangements, including inversions, translocations, and copy number variants. We have established a national pipeline and a shared variant database for variant calling and filtering. Using lrGS, 14 of the 16 known SVs are detected. Of these, 13 are mapped at nucleotide resolution, and one complex rearrangement is only visible by read depth. Two Chromosome 21 rearrangements, one mosaic, remain undetected. Average read lengths are 8.3–18.8 kb with coverage exceeding 20× for all samples. De novo assembly results in a limited number of phased contigs per individual (N50 6–86 Mb), enabling direct characterization of the chromosomal rearrangements. In a national pilot study, we demonstrate the utility of HiFi Revio lrGS for analyzing chromosomal rearrangements. Based on our results, we propose a 5-year plan to expand lrGS use for rare disease diagnostics in Sweden.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279510.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279510.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A national long-read sequencing study on chromosomal rearrangements uncovers hidden complexities
Clinical genetic laboratories often require a comprehensive analysis of chromosomal rearrangements/structural variants (SVs), from large events like translocations and inversions to supernumerary ring/marker chromosomes and small deletions or duplications. Understanding the complexity of these events and their clinical consequences requires pinpointing breakpoint junctions and resolving the derivative chromosome structure. This task often surpasses the capabilities of short-read sequencing technologies. In contrast, long-read sequencing techniques present a compelling alternative for clinical diagnostics. Here, Genomic Medicine Sweden—Rare Diseases has explored the utility of HiFi Revio long-read genome sequencing (lrGS) for digital karyotyping of SVs nationwide. The 16 samples from 13 families were collected from all Swedish healthcare regions. Prior investigations had identified 16 SVs, ranging from simple to complex rearrangements, including inversions, translocations, and copy number variants. We have established a national pipeline and a shared variant database for variant calling and filtering. Using lrGS, 14 of the 16 known SVs are detected. Of these, 13 are mapped at nucleotide resolution, and one complex rearrangement is only visible by read depth. Two Chromosome 21 rearrangements, one mosaic, remain undetected. Average read lengths are 8.3–18.8 kb with coverage exceeding 20× for all samples. De novo assembly results in a limited number of phased contigs per individual (N50 6–86 Mb), enabling direct characterization of the chromosomal rearrangements. In a national pilot study, we demonstrate the utility of HiFi Revio lrGS for analyzing chromosomal rearrangements. Based on our results, we propose a 5-year plan to expand lrGS use for rare disease diagnostics in Sweden.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.