具有高性能和长寿命的柔性不对称超级电容器:基于聚吡咯-氨基硫脲复合物的纳米虫状结构电极的制备。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-30 DOI:10.1002/smtd.202401140
Elif Avcu Altıparmak, Sibel Yazar, Tulay Bal-Demirci
{"title":"具有高性能和长寿命的柔性不对称超级电容器:基于聚吡咯-氨基硫脲复合物的纳米虫状结构电极的制备。","authors":"Elif Avcu Altıparmak, Sibel Yazar, Tulay Bal-Demirci","doi":"10.1002/smtd.202401140","DOIUrl":null,"url":null,"abstract":"<p><p>A thiosemicarbazone-based iron(III) complex is prepared and used in the preparation of a supercapacitor electrode material. This electrode is produced by a solvothermal reaction of polypyrrole and the complex on carbon felt. The characterization of the complex and material is carried out using UV-vis, elemental analysis, FT-IR, XRD, BET, and TGA methods, and the surface morphology is examined using SEM technique. Because the interaction of electrode and electrolyte is of great importance in energy storage systems, as the surface area and pore volume increase, electrode ions at the electrode/electrolyte interface leak to the inner surfaces and interact with the larger surface area, which increases the charge storage performance. The electrode material, nano-worm structure, reached the highest specific capacitance value of 764.6 F g<sup>-1</sup> at 5 mV s<sup>-1</sup>. Compared to the capacitance value of polypyrrole in its pure form, it is observed to exhibit an 187.2% increase. The highest specific capacitance value of the asymmetric supercapacitor (ASC) formed with a graphite electrode is 318.1 F g<sup>-1</sup> at the current density of 1 Ag<sup>-1</sup>. Moreover, ASC reached a wide working potential of 1.8 V in an aqueous electrolyte and exhibited ultra-long cycle life (112%), maintaining its stability after 10 000 cycles.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401140"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flexible Asymmetric Supercapacitor with High-Performance and Long-Lifetime: Fabrication of Nanoworm-Like-Structured Electrodes Based on Polypyrrole-Thiosemicarbazone Complex.\",\"authors\":\"Elif Avcu Altıparmak, Sibel Yazar, Tulay Bal-Demirci\",\"doi\":\"10.1002/smtd.202401140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A thiosemicarbazone-based iron(III) complex is prepared and used in the preparation of a supercapacitor electrode material. This electrode is produced by a solvothermal reaction of polypyrrole and the complex on carbon felt. The characterization of the complex and material is carried out using UV-vis, elemental analysis, FT-IR, XRD, BET, and TGA methods, and the surface morphology is examined using SEM technique. Because the interaction of electrode and electrolyte is of great importance in energy storage systems, as the surface area and pore volume increase, electrode ions at the electrode/electrolyte interface leak to the inner surfaces and interact with the larger surface area, which increases the charge storage performance. The electrode material, nano-worm structure, reached the highest specific capacitance value of 764.6 F g<sup>-1</sup> at 5 mV s<sup>-1</sup>. Compared to the capacitance value of polypyrrole in its pure form, it is observed to exhibit an 187.2% increase. The highest specific capacitance value of the asymmetric supercapacitor (ASC) formed with a graphite electrode is 318.1 F g<sup>-1</sup> at the current density of 1 Ag<sup>-1</sup>. Moreover, ASC reached a wide working potential of 1.8 V in an aqueous electrolyte and exhibited ultra-long cycle life (112%), maintaining its stability after 10 000 cycles.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401140\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401140\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401140","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究制备了一种硫代氨基甲酸铁(III)络合物,并将其用于制备超级电容器电极材料。这种电极是通过聚吡咯与碳毡上的络合物发生溶热反应制得的。使用紫外可见光、元素分析、傅立叶变换红外光谱、XRD、BET 和 TGA 方法对络合物和材料进行了表征,并使用扫描电镜技术对表面形貌进行了检查。由于电极和电解液的相互作用在储能系统中非常重要,随着表面积和孔体积的增加,电极/电解液界面上的电极离子会泄漏到内表面,并与更大的表面积相互作用,从而提高电荷存储性能。纳米虫结构电极材料在 5 mV s-1 时的比电容值最高,达到 764.6 F g-1。与纯聚吡咯的电容值相比,它的电容值增加了 187.2%。在电流密度为 1 Ag-1 时,用石墨电极形成的不对称超级电容器(ASC)的最高比电容值为 318.1 F g-1。此外,ASC 在水性电解液中的工作电位高达 1.8 V,并显示出超长的循环寿命(112%),在 10 000 次循环后仍能保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Flexible Asymmetric Supercapacitor with High-Performance and Long-Lifetime: Fabrication of Nanoworm-Like-Structured Electrodes Based on Polypyrrole-Thiosemicarbazone Complex.

A thiosemicarbazone-based iron(III) complex is prepared and used in the preparation of a supercapacitor electrode material. This electrode is produced by a solvothermal reaction of polypyrrole and the complex on carbon felt. The characterization of the complex and material is carried out using UV-vis, elemental analysis, FT-IR, XRD, BET, and TGA methods, and the surface morphology is examined using SEM technique. Because the interaction of electrode and electrolyte is of great importance in energy storage systems, as the surface area and pore volume increase, electrode ions at the electrode/electrolyte interface leak to the inner surfaces and interact with the larger surface area, which increases the charge storage performance. The electrode material, nano-worm structure, reached the highest specific capacitance value of 764.6 F g-1 at 5 mV s-1. Compared to the capacitance value of polypyrrole in its pure form, it is observed to exhibit an 187.2% increase. The highest specific capacitance value of the asymmetric supercapacitor (ASC) formed with a graphite electrode is 318.1 F g-1 at the current density of 1 Ag-1. Moreover, ASC reached a wide working potential of 1.8 V in an aqueous electrolyte and exhibited ultra-long cycle life (112%), maintaining its stability after 10 000 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1