通过结晶诱导的精确共组装策略提高色素团因聚集而淬灭的 FRET 效率。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-30 DOI:10.1002/smtd.202401439
Qian Zhou, Xiaomin Zhang, Lijian Ning, Yuhui Song, Yanli Wang, Jinkun Feng, Chun-Lin Sun, Jun Li, Qiuyu Gong, Qichun Zhang, Yinjuan Huang
{"title":"通过结晶诱导的精确共组装策略提高色素团因聚集而淬灭的 FRET 效率。","authors":"Qian Zhou, Xiaomin Zhang, Lijian Ning, Yuhui Song, Yanli Wang, Jinkun Feng, Chun-Lin Sun, Jun Li, Qiuyu Gong, Qichun Zhang, Yinjuan Huang","doi":"10.1002/smtd.202401439","DOIUrl":null,"url":null,"abstract":"<p><p>Förster resonance energy transfer (FRET) plays a critical role in organic optoelectronic materials. However, developing facile and effective strategies to achieve high-efficiency energy harvesting of chromophores with aggregation-caused quenching (ACQ) remains an appealing yet challenging task, that has not yet been explored. Herein, a subtly strategy, crystallization-induced precise co-assembly (CIPCA) involving a molecular \"lightening agent,\" to effectively improve FRET efficiency of ACQ chromophores is developed. Bis(phenylethynyl)anthracene (BPA) and bis(phenylethynyl)naphthacene (BPN) with significant ACQ effect are chosen as representative FRET donor and acceptor, respectively, and weakly-fluorescent octafluoronaphthalene (OFN) acted as the \"lightening agent.\" Thanks to precise co-assembly with OFN, the PLQY of solid BPA is enhanced by 107%, and the BPN powder can be unprecedentedly lighted. More importantly, through such powerful CIPCA, the monotonous and weak emission for BPA@BPN can be remarkably regulated to colorful and much brighter ones with FRET efficiency improvement of as high as 180-270%. An in-depth understanding of FRET regulation is elucidated through a precise correlation of the supramolecular structures and properties. Such achievements allow to successfully fabricate distinct multi-stimuli-responsive fluorescent patterns and highly-emissive colorful flowers with high flexibility. This research provides an efficient strategy to improve the FRET efficiency of ACQ pairs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401439"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting FRET Efficiency of Chromophores with Aggregation-Caused Quenching by a Crystallization-Induced Precise Co-assembly Strategy.\",\"authors\":\"Qian Zhou, Xiaomin Zhang, Lijian Ning, Yuhui Song, Yanli Wang, Jinkun Feng, Chun-Lin Sun, Jun Li, Qiuyu Gong, Qichun Zhang, Yinjuan Huang\",\"doi\":\"10.1002/smtd.202401439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Förster resonance energy transfer (FRET) plays a critical role in organic optoelectronic materials. However, developing facile and effective strategies to achieve high-efficiency energy harvesting of chromophores with aggregation-caused quenching (ACQ) remains an appealing yet challenging task, that has not yet been explored. Herein, a subtly strategy, crystallization-induced precise co-assembly (CIPCA) involving a molecular \\\"lightening agent,\\\" to effectively improve FRET efficiency of ACQ chromophores is developed. Bis(phenylethynyl)anthracene (BPA) and bis(phenylethynyl)naphthacene (BPN) with significant ACQ effect are chosen as representative FRET donor and acceptor, respectively, and weakly-fluorescent octafluoronaphthalene (OFN) acted as the \\\"lightening agent.\\\" Thanks to precise co-assembly with OFN, the PLQY of solid BPA is enhanced by 107%, and the BPN powder can be unprecedentedly lighted. More importantly, through such powerful CIPCA, the monotonous and weak emission for BPA@BPN can be remarkably regulated to colorful and much brighter ones with FRET efficiency improvement of as high as 180-270%. An in-depth understanding of FRET regulation is elucidated through a precise correlation of the supramolecular structures and properties. Such achievements allow to successfully fabricate distinct multi-stimuli-responsive fluorescent patterns and highly-emissive colorful flowers with high flexibility. This research provides an efficient strategy to improve the FRET efficiency of ACQ pairs.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401439\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401439\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401439","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

佛斯特共振能量转移(FRET)在有机光电材料中起着至关重要的作用。然而,开发简便有效的策略来实现具有聚集淬灭(ACQ)功能的发色团的高效能量收集,仍然是一项极具吸引力但又极具挑战性的任务,目前还没有人对此进行过探索。在此,我们开发了一种涉及分子 "增亮剂 "的微妙策略--结晶诱导精确共组装(CIPCA),以有效提高 ACQ 发色团的 FRET 效率。研究选择了具有显著 ACQ 效应的双(苯乙炔基)蒽(BPA)和双(苯乙炔基)萘(BPN)分别作为代表性的 FRET 供体和受体,弱荧光的八氟萘(OFN)作为 "增光剂"。由于与 OFN 的精确共组装,固态双酚 A 的 PLQY 提高了 107%,双酚 A 粉末可以前所未有地发光。更重要的是,通过这种功能强大的 CIPCA,BPA@BPN 单调而微弱的发射可以显著地调节为多彩而明亮的发射,FRET 效率提高了 180-270%。通过对超分子结构和性质的精确关联,人们对 FRET 调节有了深入的了解。这些成果使我们能够成功制造出独特的多刺激响应荧光图案和高灵敏度的彩色花朵。这项研究为提高 ACQ 对的 FRET 效率提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting FRET Efficiency of Chromophores with Aggregation-Caused Quenching by a Crystallization-Induced Precise Co-assembly Strategy.

Förster resonance energy transfer (FRET) plays a critical role in organic optoelectronic materials. However, developing facile and effective strategies to achieve high-efficiency energy harvesting of chromophores with aggregation-caused quenching (ACQ) remains an appealing yet challenging task, that has not yet been explored. Herein, a subtly strategy, crystallization-induced precise co-assembly (CIPCA) involving a molecular "lightening agent," to effectively improve FRET efficiency of ACQ chromophores is developed. Bis(phenylethynyl)anthracene (BPA) and bis(phenylethynyl)naphthacene (BPN) with significant ACQ effect are chosen as representative FRET donor and acceptor, respectively, and weakly-fluorescent octafluoronaphthalene (OFN) acted as the "lightening agent." Thanks to precise co-assembly with OFN, the PLQY of solid BPA is enhanced by 107%, and the BPN powder can be unprecedentedly lighted. More importantly, through such powerful CIPCA, the monotonous and weak emission for BPA@BPN can be remarkably regulated to colorful and much brighter ones with FRET efficiency improvement of as high as 180-270%. An in-depth understanding of FRET regulation is elucidated through a precise correlation of the supramolecular structures and properties. Such achievements allow to successfully fabricate distinct multi-stimuli-responsive fluorescent patterns and highly-emissive colorful flowers with high flexibility. This research provides an efficient strategy to improve the FRET efficiency of ACQ pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1