基于 Na+-Confined Na+/Mg2+ Coinsertion 化学的高功率长寿命可充电离子电池。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-31 DOI:10.1002/smtd.202401195
Fuyu Chen, Hong-Yi Li, Qing Zhong, Zijie Cai, Dong Wang, Jiang Diao, Guangsheng Huang, Jingfeng Wang, Fusheng Pan
{"title":"基于 Na+-Confined Na+/Mg2+ Coinsertion 化学的高功率长寿命可充电离子电池。","authors":"Fuyu Chen, Hong-Yi Li, Qing Zhong, Zijie Cai, Dong Wang, Jiang Diao, Guangsheng Huang, Jingfeng Wang, Fusheng Pan","doi":"10.1002/smtd.202401195","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium-sodium hybrid ion batteries (MSHIBs) are expected to achieve excellent rate capability. However, existing MSHIB cathodes exhibit low ionic conductivity and poor structural stability, resulting in low power density and cycle lifespan. Herein, sodium-rich Na<sub>3.7</sub>V<sub>6</sub>O<sub>16</sub>·2.9H<sub>2</sub>O (Na-rich NVO) nanobelts are synthesized as MSHIB cathodes. Excess Na<sup>+</sup> induced NaO<sub>5</sub> and NaO<sub>3</sub> interlayer pins, which ensures NVO structural stability to accommodate Mg<sup>2+</sup> and Na<sup>+</sup>. They also confine the migration pathway of cations to the diffusion direction, lowering the migration barriers of Mg<sup>2+</sup> and enhancing the ionic conductivity. Excess interlayer Na<sup>+</sup> increases the electronic conductivity of the involved Na-rich NVO cathode. The cathode exhibits a high Mg<sup>2+</sup> diffusion coefficient, and the resulting MSHIBs exhibit a power density of 3.4 kW kg<sup>-1</sup> and a lifespan of 20 000 cycles at 5.0 A g<sup>-1</sup>, with a capacity retention rate of 85%. Overall, this study paves the way for designing and developing fast-charging secondary batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401195"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Power and Long-Lifespan Rechargeable Ion Batteries based on Na<sup>+</sup>-Confined Na<sup>+</sup>/Mg<sup>2+</sup> Coinsertion Chemistry.\",\"authors\":\"Fuyu Chen, Hong-Yi Li, Qing Zhong, Zijie Cai, Dong Wang, Jiang Diao, Guangsheng Huang, Jingfeng Wang, Fusheng Pan\",\"doi\":\"10.1002/smtd.202401195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnesium-sodium hybrid ion batteries (MSHIBs) are expected to achieve excellent rate capability. However, existing MSHIB cathodes exhibit low ionic conductivity and poor structural stability, resulting in low power density and cycle lifespan. Herein, sodium-rich Na<sub>3.7</sub>V<sub>6</sub>O<sub>16</sub>·2.9H<sub>2</sub>O (Na-rich NVO) nanobelts are synthesized as MSHIB cathodes. Excess Na<sup>+</sup> induced NaO<sub>5</sub> and NaO<sub>3</sub> interlayer pins, which ensures NVO structural stability to accommodate Mg<sup>2+</sup> and Na<sup>+</sup>. They also confine the migration pathway of cations to the diffusion direction, lowering the migration barriers of Mg<sup>2+</sup> and enhancing the ionic conductivity. Excess interlayer Na<sup>+</sup> increases the electronic conductivity of the involved Na-rich NVO cathode. The cathode exhibits a high Mg<sup>2+</sup> diffusion coefficient, and the resulting MSHIBs exhibit a power density of 3.4 kW kg<sup>-1</sup> and a lifespan of 20 000 cycles at 5.0 A g<sup>-1</sup>, with a capacity retention rate of 85%. Overall, this study paves the way for designing and developing fast-charging secondary batteries.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401195\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401195\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401195","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

镁钠混合离子电池(MSHIBs)有望实现卓越的速率能力。然而,现有的 MSHIB 正极表现出低离子传导性和结构稳定性差,导致功率密度和循环寿命较低。在此,我们合成了富钠 Na3.7V6O16-2.9H2O(Na-rich NVO)纳米颗粒作为 MSHIB 阴极。过量的 Na+ 会诱导 NaO5 和 NaO3 层间引脚,从而确保 NVO 结构的稳定性,以容纳 Mg2+ 和 Na+。它们还将阳离子的迁移路径限制在扩散方向,降低了 Mg2+ 的迁移障碍,提高了离子导电性。过量的层间 Na+ 增加了富含 Na 的 NVO 阴极的电子电导率。阴极表现出较高的 Mg2+ 扩散系数,由此产生的 MSHIBs 功率密度为 3.4 kW kg-1,在 5.0 A g-1 下的寿命为 20 000 次循环,容量保持率为 85%。总之,这项研究为设计和开发快速充电二次电池铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Power and Long-Lifespan Rechargeable Ion Batteries based on Na+-Confined Na+/Mg2+ Coinsertion Chemistry.

Magnesium-sodium hybrid ion batteries (MSHIBs) are expected to achieve excellent rate capability. However, existing MSHIB cathodes exhibit low ionic conductivity and poor structural stability, resulting in low power density and cycle lifespan. Herein, sodium-rich Na3.7V6O16·2.9H2O (Na-rich NVO) nanobelts are synthesized as MSHIB cathodes. Excess Na+ induced NaO5 and NaO3 interlayer pins, which ensures NVO structural stability to accommodate Mg2+ and Na+. They also confine the migration pathway of cations to the diffusion direction, lowering the migration barriers of Mg2+ and enhancing the ionic conductivity. Excess interlayer Na+ increases the electronic conductivity of the involved Na-rich NVO cathode. The cathode exhibits a high Mg2+ diffusion coefficient, and the resulting MSHIBs exhibit a power density of 3.4 kW kg-1 and a lifespan of 20 000 cycles at 5.0 A g-1, with a capacity retention rate of 85%. Overall, this study paves the way for designing and developing fast-charging secondary batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1