废水中的抗生素耐药菌监测,促进公共卫生行动:潜力与挑战。

IF 5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH American journal of epidemiology Pub Date : 2024-10-28 DOI:10.1093/aje/kwae419
Betsy Foxman, Elizabeth Salzman, Chelsie Gesierich, Sarah Gardner, Michelle Ammerman, Marisa Eisenberg, Krista Wigginton
{"title":"废水中的抗生素耐药菌监测,促进公共卫生行动:潜力与挑战。","authors":"Betsy Foxman, Elizabeth Salzman, Chelsie Gesierich, Sarah Gardner, Michelle Ammerman, Marisa Eisenberg, Krista Wigginton","doi":"10.1093/aje/kwae419","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions; identifying high-risk populations for targeted monitoring; providing early warning of the emergence and spread of antibiotic resistant bacteria and identifying novel antibiotic resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary we explore whether monitoring wastewater for antibiotic resistant genes and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in antibiotic resistant bacteria (ARBs) and antibiotic resistant genes (ARGs) and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wastewater surveillance of antibiotic resistant bacteria for public health action: Potential and Challenges.\",\"authors\":\"Betsy Foxman, Elizabeth Salzman, Chelsie Gesierich, Sarah Gardner, Michelle Ammerman, Marisa Eisenberg, Krista Wigginton\",\"doi\":\"10.1093/aje/kwae419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions; identifying high-risk populations for targeted monitoring; providing early warning of the emergence and spread of antibiotic resistant bacteria and identifying novel antibiotic resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary we explore whether monitoring wastewater for antibiotic resistant genes and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in antibiotic resistant bacteria (ARBs) and antibiotic resistant genes (ARGs) and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation.</p>\",\"PeriodicalId\":7472,\"journal\":{\"name\":\"American journal of epidemiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/aje/kwae419\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae419","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性是一个紧迫的公共卫生威胁。减少这一威胁的措施包括要求开具抗生素使用处方、抗生素管理计划、针对患者和医疗服务提供者的教育计划,以及限制抗生素在农业、水产养殖业和畜牧业中的使用。废水监测可作为临床监测的补充,通过跟踪对检测疫情和评估循证干预措施的效果至关重要的时间/空间变化;识别高风险人群,进行有针对性的监测;对耐抗生素细菌的出现和传播提供早期预警,并识别新型耐抗生素威胁。对于 SARS-CoV-2 的传播和新病毒株的出现,废水监测是一个有效的早期预警系统。在这篇数据驱动的评论中,我们探讨了监测废水中的抗生素耐药基因和/或抗生素耐药细菌是否能为公共卫生行动提供有用的信息。以碳青霉烯耐药性为例,我们强调了利用废水量化抗生素耐药细菌(ARB)和抗生素耐药基因(ARGs)的时间/空间趋势并与临床信息进行比较所面临的技术挑战。虽然可以在废水中检测到 ARGs 和 ARBs,从而及早发现新型 ARGs,但使用现有方法对 ARBs 和 ARGs 进行定量分析时,其结果变化太大,无法可靠地跟踪空间/时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wastewater surveillance of antibiotic resistant bacteria for public health action: Potential and Challenges.

Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions; identifying high-risk populations for targeted monitoring; providing early warning of the emergence and spread of antibiotic resistant bacteria and identifying novel antibiotic resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary we explore whether monitoring wastewater for antibiotic resistant genes and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in antibiotic resistant bacteria (ARBs) and antibiotic resistant genes (ARGs) and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American journal of epidemiology
American journal of epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.40
自引率
4.00%
发文量
221
审稿时长
3-6 weeks
期刊介绍: The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research. It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.
期刊最新文献
Assessing trends in internalizing symptoms among racialized and minoritized adolescents: results from the Monitoring the Future Study 2005-2020. Targeted learning with an undersmoothed LASSO propensity score model for large-scale covariate adjustment in health-care database studies. DNA methylation as a possible mechanism linking childhood adversity and health: results from a 2-sample mendelian randomization study. Invited commentary: it's not all about residual confounding-a plea for quantitative bias analysis for epidemiologic researchers and educators. Validation of algorithms in studies based on routinely collected health data: general principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1