Karla Hemming, Laura Kudrna, Sam Watson, Monica Taljaard, Sheila Greenfield, Beatriz Goulao, Richard Lilford
{"title":"随机试验中统计结果的解释:利用开放式问题的主题分析对统计人员进行的调查。","authors":"Karla Hemming, Laura Kudrna, Sam Watson, Monica Taljaard, Sheila Greenfield, Beatriz Goulao, Richard Lilford","doi":"10.1186/s12874-024-02366-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dichotomisation of statistical significance, rather than interpretation of effect sizes supported by confidence intervals, is a long-standing problem.</p><p><strong>Methods: </strong>We distributed an online survey to clinical trial statisticians across the UK, Australia and Canada asking about their experiences, perspectives and practices with respect to interpretation of statistical findings from randomised trials. We report a descriptive analysis of the closed-ended questions and a thematic analysis of the open-ended questions.</p><p><strong>Results: </strong>We obtained 101 responses across a broad range of career stages (24% professors; 51% senior lecturers; 22% junior statisticians) and areas of work (28% early phase trials; 44% drug trials; 38% health service trials). The majority (93%) believed that statistical findings should be interpreted by considering (minimal) clinical importance of treatment effects, but many (61%) said quantifying clinically important effect sizes was difficult, and fewer (54%) followed this approach in practice. Thematic analysis identified several barriers to forming a consensus on the statistical interpretation of the study findings, including: the dynamics within teams, lack of knowledge or difficulties in communicating that knowledge, as well as external pressures. External pressures included the pressure to publish definitive findings and statistical review which can sometimes be unhelpful but can at times be a saving grace. However, the concept of the minimally important difference was identified as a particularly poorly defined, even nebulous, construct which lies at the heart of much disagreement and confusion in the field.</p><p><strong>Conclusion: </strong>The majority of participating statisticians believed that it is important to interpret statistical findings based on the clinically important effect size, but report this is difficult to operationalise. Reaching a consensus on the interpretation of a study is a social process involving disparate members of the research team along with editors and reviewers, as well as patients who likely have a role in the elicitation of minimally important differences.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"256"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520448/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interpretation of statistical findings in randomised trials: a survey of statisticians using thematic analysis of open-ended questions.\",\"authors\":\"Karla Hemming, Laura Kudrna, Sam Watson, Monica Taljaard, Sheila Greenfield, Beatriz Goulao, Richard Lilford\",\"doi\":\"10.1186/s12874-024-02366-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dichotomisation of statistical significance, rather than interpretation of effect sizes supported by confidence intervals, is a long-standing problem.</p><p><strong>Methods: </strong>We distributed an online survey to clinical trial statisticians across the UK, Australia and Canada asking about their experiences, perspectives and practices with respect to interpretation of statistical findings from randomised trials. We report a descriptive analysis of the closed-ended questions and a thematic analysis of the open-ended questions.</p><p><strong>Results: </strong>We obtained 101 responses across a broad range of career stages (24% professors; 51% senior lecturers; 22% junior statisticians) and areas of work (28% early phase trials; 44% drug trials; 38% health service trials). The majority (93%) believed that statistical findings should be interpreted by considering (minimal) clinical importance of treatment effects, but many (61%) said quantifying clinically important effect sizes was difficult, and fewer (54%) followed this approach in practice. Thematic analysis identified several barriers to forming a consensus on the statistical interpretation of the study findings, including: the dynamics within teams, lack of knowledge or difficulties in communicating that knowledge, as well as external pressures. External pressures included the pressure to publish definitive findings and statistical review which can sometimes be unhelpful but can at times be a saving grace. However, the concept of the minimally important difference was identified as a particularly poorly defined, even nebulous, construct which lies at the heart of much disagreement and confusion in the field.</p><p><strong>Conclusion: </strong>The majority of participating statisticians believed that it is important to interpret statistical findings based on the clinically important effect size, but report this is difficult to operationalise. Reaching a consensus on the interpretation of a study is a social process involving disparate members of the research team along with editors and reviewers, as well as patients who likely have a role in the elicitation of minimally important differences.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":\"24 1\",\"pages\":\"256\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02366-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02366-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Interpretation of statistical findings in randomised trials: a survey of statisticians using thematic analysis of open-ended questions.
Background: Dichotomisation of statistical significance, rather than interpretation of effect sizes supported by confidence intervals, is a long-standing problem.
Methods: We distributed an online survey to clinical trial statisticians across the UK, Australia and Canada asking about their experiences, perspectives and practices with respect to interpretation of statistical findings from randomised trials. We report a descriptive analysis of the closed-ended questions and a thematic analysis of the open-ended questions.
Results: We obtained 101 responses across a broad range of career stages (24% professors; 51% senior lecturers; 22% junior statisticians) and areas of work (28% early phase trials; 44% drug trials; 38% health service trials). The majority (93%) believed that statistical findings should be interpreted by considering (minimal) clinical importance of treatment effects, but many (61%) said quantifying clinically important effect sizes was difficult, and fewer (54%) followed this approach in practice. Thematic analysis identified several barriers to forming a consensus on the statistical interpretation of the study findings, including: the dynamics within teams, lack of knowledge or difficulties in communicating that knowledge, as well as external pressures. External pressures included the pressure to publish definitive findings and statistical review which can sometimes be unhelpful but can at times be a saving grace. However, the concept of the minimally important difference was identified as a particularly poorly defined, even nebulous, construct which lies at the heart of much disagreement and confusion in the field.
Conclusion: The majority of participating statisticians believed that it is important to interpret statistical findings based on the clinically important effect size, but report this is difficult to operationalise. Reaching a consensus on the interpretation of a study is a social process involving disparate members of the research team along with editors and reviewers, as well as patients who likely have a role in the elicitation of minimally important differences.
期刊介绍:
BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.