丰坦增大的生物力学和临床意义。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-10-30 DOI:10.1016/j.compbiomed.2024.109317
Vijay Govindarajan , Akshita Sahni , Emily Eickhoff , Peter Hammer , David M. Hoganson , Rahul H. Rathod , Pedro J. del Nido
{"title":"丰坦增大的生物力学和临床意义。","authors":"Vijay Govindarajan ,&nbsp;Akshita Sahni ,&nbsp;Emily Eickhoff ,&nbsp;Peter Hammer ,&nbsp;David M. Hoganson ,&nbsp;Rahul H. Rathod ,&nbsp;Pedro J. del Nido","doi":"10.1016/j.compbiomed.2024.109317","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The Fontan operation, a palliative procedure for single ventricle patients, has evolved to improve outcomes and reduce complications. While extracardiac conduit (ECC) is favored for its simplicity and potential hemodynamic benefits, concerns arise about conduit size adequacy over time. Undersized ECC conduits may cause hemodynamic inefficiencies and long-term complications, while oversizing can lead to flow disturbances, stagnation, and thrombosis, necessitating surgical revision or upsizing to optimize hemodynamics.</div></div><div><h3>Objectives</h3><div>The study aimed to predict the impact of upsizing by developing a patient-specific workflow using cardiac magnetic resonance-based imaging and computational fluid dynamics to assess Fontan hemodynamic changes and determine the most optimal conduit size.</div></div><div><h3>Methods</h3><div>We simulated upsizing in patient-specific models, computing reduction in power loss (PL), and analyzed pressure gradients, wall shear stress (WSS), and other local flow dynamic parameters such as vorticity and viscous dissipation that influence PL in a Fontan. Additionally, we quantified the impact of upsizing on hepatic flow distribution (HFD).</div></div><div><h3>Results</h3><div>Across the patient cohort, upsizing resulted in a PL reduction of 16 %–63 %, with the greatest reduction observed in patients with the smallest pre-existing conduit sizes (14 mm). The optimal conduit size for minimizing PL was highly patient-specific. For instance, a 20 mm conduit reduced PL by 63 % in one patient, while another patient showed 16 % reduction with upsizing. Pressure gradients decreased by 15 %–35 %, correlating with the reduction in PL, while WSS decreased consistently with upsizing. Vorticity and viscous dissipation exhibited more variability but followed the overall trend of reduced PL. HFD changes were modest with a maximum variation of 30 %.</div></div><div><h3>Conclusions</h3><div>Our findings underscore the importance of individualized approaches in Fontan conduit upsizing. CFD-based quantitative evaluations of PL, pressure gradients, HFD, and WSS can guide optimal conduit sizing, improving long-term outcomes for patients.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"183 ","pages":"Article 109317"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanics and clinical implications of Fontan upsizing\",\"authors\":\"Vijay Govindarajan ,&nbsp;Akshita Sahni ,&nbsp;Emily Eickhoff ,&nbsp;Peter Hammer ,&nbsp;David M. Hoganson ,&nbsp;Rahul H. Rathod ,&nbsp;Pedro J. del Nido\",\"doi\":\"10.1016/j.compbiomed.2024.109317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The Fontan operation, a palliative procedure for single ventricle patients, has evolved to improve outcomes and reduce complications. While extracardiac conduit (ECC) is favored for its simplicity and potential hemodynamic benefits, concerns arise about conduit size adequacy over time. Undersized ECC conduits may cause hemodynamic inefficiencies and long-term complications, while oversizing can lead to flow disturbances, stagnation, and thrombosis, necessitating surgical revision or upsizing to optimize hemodynamics.</div></div><div><h3>Objectives</h3><div>The study aimed to predict the impact of upsizing by developing a patient-specific workflow using cardiac magnetic resonance-based imaging and computational fluid dynamics to assess Fontan hemodynamic changes and determine the most optimal conduit size.</div></div><div><h3>Methods</h3><div>We simulated upsizing in patient-specific models, computing reduction in power loss (PL), and analyzed pressure gradients, wall shear stress (WSS), and other local flow dynamic parameters such as vorticity and viscous dissipation that influence PL in a Fontan. Additionally, we quantified the impact of upsizing on hepatic flow distribution (HFD).</div></div><div><h3>Results</h3><div>Across the patient cohort, upsizing resulted in a PL reduction of 16 %–63 %, with the greatest reduction observed in patients with the smallest pre-existing conduit sizes (14 mm). The optimal conduit size for minimizing PL was highly patient-specific. For instance, a 20 mm conduit reduced PL by 63 % in one patient, while another patient showed 16 % reduction with upsizing. Pressure gradients decreased by 15 %–35 %, correlating with the reduction in PL, while WSS decreased consistently with upsizing. Vorticity and viscous dissipation exhibited more variability but followed the overall trend of reduced PL. HFD changes were modest with a maximum variation of 30 %.</div></div><div><h3>Conclusions</h3><div>Our findings underscore the importance of individualized approaches in Fontan conduit upsizing. CFD-based quantitative evaluations of PL, pressure gradients, HFD, and WSS can guide optimal conduit sizing, improving long-term outcomes for patients.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"183 \",\"pages\":\"Article 109317\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524014021\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:丰坦手术是一种针对单心室患者的姑息性手术,其发展旨在提高疗效和减少并发症。虽然心外导管(ECC)因其简便性和潜在的血流动力学益处而受到青睐,但随着时间的推移,导管尺寸是否合适也引起了人们的关注。ECC导管尺寸过小可能导致血液动力学效率低下和长期并发症,而尺寸过大则可能导致血流紊乱、停滞和血栓形成,从而需要进行手术修整或扩大尺寸以优化血液动力学:该研究旨在通过使用基于心脏磁共振成像和计算流体动力学的患者特异性工作流程来评估丰坦血流动力学变化,并确定最理想的导管尺寸,从而预测加大导管尺寸的影响:我们在患者特异性模型中模拟了扩大导管尺寸,计算了功率损失(PL)的减少,分析了压力梯度、壁剪应力(WSS)和其他局部流动动态参数,如影响 Fontan 功率损失的涡度和粘性耗散。此外,我们还量化了扩大手术规模对肝血流分布(HFD)的影响:结果:在所有患者群中,扩大导管尺寸可使肝血流分布减少 16%-63% ,其中导管尺寸最小(14 毫米)的患者肝血流分布减少最多。最大程度降低PL的最佳导管尺寸与患者的具体情况密切相关。例如,在一名患者身上,20 毫米的导管可将血流阻力降低 63%,而另一名患者则在加大导管尺寸后降低了 16%。压力梯度减少了 15%-35%,与 PL 的减少相关,而 WSS 则随着尺寸的增大而持续减少。涡度和粘性耗散的变化更大,但总体趋势是 PL 减少。高频分解的变化不大,最大变化为 30%:我们的研究结果强调了在扩大丰坦导管尺寸时采用个性化方法的重要性。基于 CFD 的 PL、压力梯度、HFD 和 WSS 定量评估可以指导导管的最佳尺寸,改善患者的长期预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomechanics and clinical implications of Fontan upsizing

Background

The Fontan operation, a palliative procedure for single ventricle patients, has evolved to improve outcomes and reduce complications. While extracardiac conduit (ECC) is favored for its simplicity and potential hemodynamic benefits, concerns arise about conduit size adequacy over time. Undersized ECC conduits may cause hemodynamic inefficiencies and long-term complications, while oversizing can lead to flow disturbances, stagnation, and thrombosis, necessitating surgical revision or upsizing to optimize hemodynamics.

Objectives

The study aimed to predict the impact of upsizing by developing a patient-specific workflow using cardiac magnetic resonance-based imaging and computational fluid dynamics to assess Fontan hemodynamic changes and determine the most optimal conduit size.

Methods

We simulated upsizing in patient-specific models, computing reduction in power loss (PL), and analyzed pressure gradients, wall shear stress (WSS), and other local flow dynamic parameters such as vorticity and viscous dissipation that influence PL in a Fontan. Additionally, we quantified the impact of upsizing on hepatic flow distribution (HFD).

Results

Across the patient cohort, upsizing resulted in a PL reduction of 16 %–63 %, with the greatest reduction observed in patients with the smallest pre-existing conduit sizes (14 mm). The optimal conduit size for minimizing PL was highly patient-specific. For instance, a 20 mm conduit reduced PL by 63 % in one patient, while another patient showed 16 % reduction with upsizing. Pressure gradients decreased by 15 %–35 %, correlating with the reduction in PL, while WSS decreased consistently with upsizing. Vorticity and viscous dissipation exhibited more variability but followed the overall trend of reduced PL. HFD changes were modest with a maximum variation of 30 %.

Conclusions

Our findings underscore the importance of individualized approaches in Fontan conduit upsizing. CFD-based quantitative evaluations of PL, pressure gradients, HFD, and WSS can guide optimal conduit sizing, improving long-term outcomes for patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1