Yi-Rao Zhou, Jun-Jie Dang, Qi-Chao Yang, Zhi-Jun Sun
{"title":"翻译后修饰对热蛋白沉积的调控:分子机制和治疗靶点。","authors":"Yi-Rao Zhou, Jun-Jie Dang, Qi-Chao Yang, Zhi-Jun Sun","doi":"10.1016/j.ebiom.2024.105420","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis, a type of programmed cell death mediated by gasdermin family proteins, releases a large amount of immune stimulatory substances, which further contribute to inflammation and elicit an adaptive immune response against tumours and pathogens. And it occurs through multiple pathways that involve the activation of specific caspases and the cleavage of gasdermins. Post-translational modifications (PTMs) could influence the chemical properties of the modified residues and neighbouring regions, ultimately affecting the activity, stability, and functions of proteins to regulate pyroptosis. Many studies have been conducted to explore the influence of PTMs on the regulation of pyroptosis. In this review, we provide a comprehensive summary of different types of PTMs that influence pyroptosis, along with their corresponding modifying enzymes. Moreover, it elaborates on the specific contributions of different PTMs to pyroptosis and delves into how the regulation of these modifications can be leveraged for therapeutic interventions in cancer and inflammatory diseases.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The regulation of pyroptosis by post-translational modifications: molecular mechanisms and therapeutic targets.\",\"authors\":\"Yi-Rao Zhou, Jun-Jie Dang, Qi-Chao Yang, Zhi-Jun Sun\",\"doi\":\"10.1016/j.ebiom.2024.105420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyroptosis, a type of programmed cell death mediated by gasdermin family proteins, releases a large amount of immune stimulatory substances, which further contribute to inflammation and elicit an adaptive immune response against tumours and pathogens. And it occurs through multiple pathways that involve the activation of specific caspases and the cleavage of gasdermins. Post-translational modifications (PTMs) could influence the chemical properties of the modified residues and neighbouring regions, ultimately affecting the activity, stability, and functions of proteins to regulate pyroptosis. Many studies have been conducted to explore the influence of PTMs on the regulation of pyroptosis. In this review, we provide a comprehensive summary of different types of PTMs that influence pyroptosis, along with their corresponding modifying enzymes. Moreover, it elaborates on the specific contributions of different PTMs to pyroptosis and delves into how the regulation of these modifications can be leveraged for therapeutic interventions in cancer and inflammatory diseases.</p>\",\"PeriodicalId\":11494,\"journal\":{\"name\":\"EBioMedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EBioMedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ebiom.2024.105420\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105420","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The regulation of pyroptosis by post-translational modifications: molecular mechanisms and therapeutic targets.
Pyroptosis, a type of programmed cell death mediated by gasdermin family proteins, releases a large amount of immune stimulatory substances, which further contribute to inflammation and elicit an adaptive immune response against tumours and pathogens. And it occurs through multiple pathways that involve the activation of specific caspases and the cleavage of gasdermins. Post-translational modifications (PTMs) could influence the chemical properties of the modified residues and neighbouring regions, ultimately affecting the activity, stability, and functions of proteins to regulate pyroptosis. Many studies have been conducted to explore the influence of PTMs on the regulation of pyroptosis. In this review, we provide a comprehensive summary of different types of PTMs that influence pyroptosis, along with their corresponding modifying enzymes. Moreover, it elaborates on the specific contributions of different PTMs to pyroptosis and delves into how the regulation of these modifications can be leveraged for therapeutic interventions in cancer and inflammatory diseases.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.