Mark Ross, Sarah Aldred, Mark T Drayson, Jos A Bosch, James E Turner
{"title":"运动诱导的祖细胞动员和外渗的程度与心肺功能呈正相关。","authors":"Mark Ross, Sarah Aldred, Mark T Drayson, Jos A Bosch, James E Turner","doi":"10.1113/EP092041","DOIUrl":null,"url":null,"abstract":"<p><p>CD34<sup>+</sup> progenitor cells with angiogenic capabilities traffic into blood during exercise and extravasate afterwards but the magnitude of this response varies between people. We examined whether exercise-induced progenitor cell trafficking is influenced by cardiorespiratory fitness (maximum oxygen uptake; <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}{\\mathrm{max}}}}$</annotation></semantics> </math> ). Ten males (age: 23 ± 3 years; <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}{\\mathrm{max}}}}$</annotation></semantics> </math> : 61.88 ± 4.68 mL kg min<sup>-1</sup>) undertook 1 h of treadmill running at 80% of <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}{\\mathrm{max}}}}$</annotation></semantics> </math> . Blood samples were collected before exercise (Pre), in the final minute of exercise (0 h) and afterwards at 0.25, 1 and 24 h. Pan-progenitor cells (CD34<sup>+</sup>, CD34<sup>+</sup>CD45<sup>dim</sup>) and putative endothelial progenitor cells (CD34<sup>+</sup>CD133<sup>+</sup>, CD34<sup>+</sup>VEGFR2<sup>+</sup>, CD34<sup>+</sup>CD45<sup>dim</sup>VEGFR2<sup>+</sup>) were quantified using flow cytometry. Progenitor subpopulations (except for CD34<sup>+</sup>CD45<sup>dim</sup>VEGFR2<sup>+</sup>) increased at 0 h (P < 0.05) and returned to pre-exercise levels by 1 h. <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}{\\mathrm{max}}}}$</annotation></semantics> </math> was positively associated with the exercise-induced progenitor cell response and there were statistically significant time × <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}{\\mathrm{max}}}}$</annotation></semantics> </math> interactions for CD34<sup>+</sup>, CD34<sup>+</sup>CD45<sup>dim</sup> and CD34+CD133<sup>+</sup> subpopulations but not VEGFR2-expressing progenitor cells. There were statistically significant correlations between <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_2}{\\mathrm{max}}}}$</annotation></semantics> </math> and ingress (r > 0.70, P < 0.025) and egress (r > -0.77, P < 0.009) of progenitor cell subsets (CD34<sup>+</sup>, CD34<sup>+</sup>CD45<sup>dim</sup>, CD34<sup>+</sup>CD133<sup>+</sup>), showing that cardiorespiratory fitness influences the magnitude of progenitor cell mobilisation into the blood and subsequent extravasation. These data may provide a link between high levels of cardiorespiratory fitness and vascular health.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The magnitude of exercise-induced progenitor cell mobilisation and extravasation is positively associated with cardiorespiratory fitness.\",\"authors\":\"Mark Ross, Sarah Aldred, Mark T Drayson, Jos A Bosch, James E Turner\",\"doi\":\"10.1113/EP092041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CD34<sup>+</sup> progenitor cells with angiogenic capabilities traffic into blood during exercise and extravasate afterwards but the magnitude of this response varies between people. We examined whether exercise-induced progenitor cell trafficking is influenced by cardiorespiratory fitness (maximum oxygen uptake; <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}{\\\\mathrm{max}}}}$</annotation></semantics> </math> ). Ten males (age: 23 ± 3 years; <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}{\\\\mathrm{max}}}}$</annotation></semantics> </math> : 61.88 ± 4.68 mL kg min<sup>-1</sup>) undertook 1 h of treadmill running at 80% of <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}{\\\\mathrm{max}}}}$</annotation></semantics> </math> . Blood samples were collected before exercise (Pre), in the final minute of exercise (0 h) and afterwards at 0.25, 1 and 24 h. Pan-progenitor cells (CD34<sup>+</sup>, CD34<sup>+</sup>CD45<sup>dim</sup>) and putative endothelial progenitor cells (CD34<sup>+</sup>CD133<sup>+</sup>, CD34<sup>+</sup>VEGFR2<sup>+</sup>, CD34<sup>+</sup>CD45<sup>dim</sup>VEGFR2<sup>+</sup>) were quantified using flow cytometry. Progenitor subpopulations (except for CD34<sup>+</sup>CD45<sup>dim</sup>VEGFR2<sup>+</sup>) increased at 0 h (P < 0.05) and returned to pre-exercise levels by 1 h. <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}{\\\\mathrm{max}}}}$</annotation></semantics> </math> was positively associated with the exercise-induced progenitor cell response and there were statistically significant time × <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}{\\\\mathrm{max}}}}$</annotation></semantics> </math> interactions for CD34<sup>+</sup>, CD34<sup>+</sup>CD45<sup>dim</sup> and CD34+CD133<sup>+</sup> subpopulations but not VEGFR2-expressing progenitor cells. There were statistically significant correlations between <math> <semantics> <msub><mover><mi>V</mi> <mo>̇</mo></mover> <mrow><msub><mi>O</mi> <mn>2</mn></msub> <mi>max</mi></mrow> </msub> <annotation>${{\\\\dot{V}}_{{{{\\\\mathrm{O}}}_2}{\\\\mathrm{max}}}}$</annotation></semantics> </math> and ingress (r > 0.70, P < 0.025) and egress (r > -0.77, P < 0.009) of progenitor cell subsets (CD34<sup>+</sup>, CD34<sup>+</sup>CD45<sup>dim</sup>, CD34<sup>+</sup>CD133<sup>+</sup>), showing that cardiorespiratory fitness influences the magnitude of progenitor cell mobilisation into the blood and subsequent extravasation. These data may provide a link between high levels of cardiorespiratory fitness and vascular health.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092041\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
具有血管生成能力的CD34+祖细胞会在运动时进入血液并在运动后外渗,但这种反应的程度因人而异。我们研究了运动诱导的祖细胞迁移是否受心肺功能(最大摄氧量;V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}{mathrm{max}}}}$ )的影响。10名男性(年龄:23±3岁;最大V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_2}{mathrm{max}}}}$ : 61.88 ± 4.68 mL kg min-1)以最大V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_2}{mathrm{max}}}}$ 的80%进行了1小时的跑步机跑步。使用流式细胞术对泛祖细胞(CD34+、CD34+CD45dim)和推测的内皮祖细胞(CD34+CD133+、CD34+VEGFR2+、CD34+CD45dimVEGFR2+)进行量化。祖细胞亚群(CD34+CD45dimVEGFR2+除外)在0小时时增加(P V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}_2}{{mathrm{max}}}}$ 与运动诱导的祖细胞反应呈正相关)。CD34+ 和 CD45dim 与运动诱导的祖细胞反应存在统计学意义上显著的时间 × V ̇ O 2 max ${{dot{V}}_{{{{m\mathrm{O}}_2}}\{mathrm{max}}}}$ 相互作用、CD34+CD45dim和CD34+CD133+亚群的相互作用,但不包括表达VEGFR2的祖细胞。V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}{\mathrm{max}}}}$ 与入血量之间存在统计学意义上的显著相关性(r > 0.70,P -0.77,P +,CD34+CD45dim,CD34+CD133+),表明心肺功能影响祖细胞动员入血及随后外渗的程度。这些数据可能提供了高水平心肺功能与血管健康之间的联系。
The magnitude of exercise-induced progenitor cell mobilisation and extravasation is positively associated with cardiorespiratory fitness.
CD34+ progenitor cells with angiogenic capabilities traffic into blood during exercise and extravasate afterwards but the magnitude of this response varies between people. We examined whether exercise-induced progenitor cell trafficking is influenced by cardiorespiratory fitness (maximum oxygen uptake; ). Ten males (age: 23 ± 3 years; : 61.88 ± 4.68 mL kg min-1) undertook 1 h of treadmill running at 80% of . Blood samples were collected before exercise (Pre), in the final minute of exercise (0 h) and afterwards at 0.25, 1 and 24 h. Pan-progenitor cells (CD34+, CD34+CD45dim) and putative endothelial progenitor cells (CD34+CD133+, CD34+VEGFR2+, CD34+CD45dimVEGFR2+) were quantified using flow cytometry. Progenitor subpopulations (except for CD34+CD45dimVEGFR2+) increased at 0 h (P < 0.05) and returned to pre-exercise levels by 1 h. was positively associated with the exercise-induced progenitor cell response and there were statistically significant time × interactions for CD34+, CD34+CD45dim and CD34+CD133+ subpopulations but not VEGFR2-expressing progenitor cells. There were statistically significant correlations between and ingress (r > 0.70, P < 0.025) and egress (r > -0.77, P < 0.009) of progenitor cell subsets (CD34+, CD34+CD45dim, CD34+CD133+), showing that cardiorespiratory fitness influences the magnitude of progenitor cell mobilisation into the blood and subsequent extravasation. These data may provide a link between high levels of cardiorespiratory fitness and vascular health.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.