两种碳酸酐酶抑制剂对急性缺氧状态下运动表现的影响

IF 3.3 3区 医学 Q1 PHYSIOLOGY Journal of applied physiology Pub Date : 2024-10-31 DOI:10.1152/japplphysiol.00589.2024
Jou-Chung Chang, Benjamin P Thompson, Connor J Doherty, Leah M Mann, Antonia N Berdeklis, Glen E Foster, A Russell Tupling, Erik R Swenson, Paolo B Dominelli
{"title":"两种碳酸酐酶抑制剂对急性缺氧状态下运动表现的影响","authors":"Jou-Chung Chang, Benjamin P Thompson, Connor J Doherty, Leah M Mann, Antonia N Berdeklis, Glen E Foster, A Russell Tupling, Erik R Swenson, Paolo B Dominelli","doi":"10.1152/japplphysiol.00589.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Acute mountain sickness occurs due to rapid altitude ascents and/or insufficient acclimatization. Acetazolamide (AZ) is commonly prescribed for AMS prophylaxis but inhibits exercise performance. Methazolamide (MZ), an analogous drug, has similar prophylactic benefits but does not impair isolated muscle mass exercise performance in normoxia. We sought to compare whole-body exercise performance in acute hypoxia (F<sub>I</sub>O<sub>2</sub> = 0.15) between AZ, MZ and placebo (PLA). Fifteen healthy participants completed 5 testing visits: day 1 maximal exercise test, day 2 a familiarization, and days 3-5 were the experimental visits. Each experimental visit involved a 5-km hypoxic cycling time trial performed after a 2-day dosing protocol of either AZ (250 mg t.i.d.), MZ (100 mg b.i.d.) or PLA (t.i.d.); the order was randomized and double-blinded. Prior to exercise, capillary blood samples were taken, and maximal voluntary contractions of quadriceps were performed. AZ and MZ resulted in a partially compensated metabolic acidosis at rest compared to PLA (capillary H<sup>+</sup> 47±3, 43±2, 39±2 nmol for AZ, MZ and PLA respectively, p<0.01). Time to complete 5-km with PLA (562±32 seconds, p<0.01) was significantly faster than AZ and MZ (577±38 vs. 581±37s respectively), with no differences between AZ and MZ (p=0.96). There were no differences in average ventilation (124±27, 127±24, 127±19 l/min) and oxyhemoglobin saturation (87±2, 88±2, 88±3%) between AZ, MZ and PLA respectively (p>0.05). Overall, both AZ and MZ impair whole-body exercise performance in acute normobaric hypoxia.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of two carbonic anhydrase inhibitors on exercise performance in acute hypoxia.\",\"authors\":\"Jou-Chung Chang, Benjamin P Thompson, Connor J Doherty, Leah M Mann, Antonia N Berdeklis, Glen E Foster, A Russell Tupling, Erik R Swenson, Paolo B Dominelli\",\"doi\":\"10.1152/japplphysiol.00589.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute mountain sickness occurs due to rapid altitude ascents and/or insufficient acclimatization. Acetazolamide (AZ) is commonly prescribed for AMS prophylaxis but inhibits exercise performance. Methazolamide (MZ), an analogous drug, has similar prophylactic benefits but does not impair isolated muscle mass exercise performance in normoxia. We sought to compare whole-body exercise performance in acute hypoxia (F<sub>I</sub>O<sub>2</sub> = 0.15) between AZ, MZ and placebo (PLA). Fifteen healthy participants completed 5 testing visits: day 1 maximal exercise test, day 2 a familiarization, and days 3-5 were the experimental visits. Each experimental visit involved a 5-km hypoxic cycling time trial performed after a 2-day dosing protocol of either AZ (250 mg t.i.d.), MZ (100 mg b.i.d.) or PLA (t.i.d.); the order was randomized and double-blinded. Prior to exercise, capillary blood samples were taken, and maximal voluntary contractions of quadriceps were performed. AZ and MZ resulted in a partially compensated metabolic acidosis at rest compared to PLA (capillary H<sup>+</sup> 47±3, 43±2, 39±2 nmol for AZ, MZ and PLA respectively, p<0.01). Time to complete 5-km with PLA (562±32 seconds, p<0.01) was significantly faster than AZ and MZ (577±38 vs. 581±37s respectively), with no differences between AZ and MZ (p=0.96). There were no differences in average ventilation (124±27, 127±24, 127±19 l/min) and oxyhemoglobin saturation (87±2, 88±2, 88±3%) between AZ, MZ and PLA respectively (p>0.05). Overall, both AZ and MZ impair whole-body exercise performance in acute normobaric hypoxia.</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00589.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00589.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

急性高山反应是由于快速上升海拔和/或适应不足造成的。乙酰唑胺(AZ)是预防高山反应的常用药物,但会抑制运动表现。甲氮唑胺(MZ)是一种类似的药物,具有类似的预防作用,但在常氧状态下不会影响孤立肌肉群的运动表现。我们试图比较 AZ、MZ 和安慰剂(PLA)在急性缺氧(FIO2 = 0.15)情况下的全身运动表现。15 名健康参与者完成了 5 次测试:第 1 天为最大运动量测试,第 2 天为熟悉测试,第 3-5 天为实验测试。每个实验访问都包括 5 公里缺氧自行车计时测试,测试前两天分别服用 AZ(250 毫克,一天一次)、MZ(100 毫克,一天两次)或 PLA(一天一次);测试顺序随机且双盲。运动前采集毛细血管血样,并进行股四头肌的最大自主收缩。与 PLA 相比,AZ 和 MZ 在静息时会导致部分代偿性代谢性酸中毒(AZ、MZ 和 PLA 的毛细血管 H+ 分别为 47±3、43±2、39±2 nmol,P0.05)。总之,AZ 和 MZ 都会损害急性常压缺氧下的全身运动能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of two carbonic anhydrase inhibitors on exercise performance in acute hypoxia.

Acute mountain sickness occurs due to rapid altitude ascents and/or insufficient acclimatization. Acetazolamide (AZ) is commonly prescribed for AMS prophylaxis but inhibits exercise performance. Methazolamide (MZ), an analogous drug, has similar prophylactic benefits but does not impair isolated muscle mass exercise performance in normoxia. We sought to compare whole-body exercise performance in acute hypoxia (FIO2 = 0.15) between AZ, MZ and placebo (PLA). Fifteen healthy participants completed 5 testing visits: day 1 maximal exercise test, day 2 a familiarization, and days 3-5 were the experimental visits. Each experimental visit involved a 5-km hypoxic cycling time trial performed after a 2-day dosing protocol of either AZ (250 mg t.i.d.), MZ (100 mg b.i.d.) or PLA (t.i.d.); the order was randomized and double-blinded. Prior to exercise, capillary blood samples were taken, and maximal voluntary contractions of quadriceps were performed. AZ and MZ resulted in a partially compensated metabolic acidosis at rest compared to PLA (capillary H+ 47±3, 43±2, 39±2 nmol for AZ, MZ and PLA respectively, p<0.01). Time to complete 5-km with PLA (562±32 seconds, p<0.01) was significantly faster than AZ and MZ (577±38 vs. 581±37s respectively), with no differences between AZ and MZ (p=0.96). There were no differences in average ventilation (124±27, 127±24, 127±19 l/min) and oxyhemoglobin saturation (87±2, 88±2, 88±3%) between AZ, MZ and PLA respectively (p>0.05). Overall, both AZ and MZ impair whole-body exercise performance in acute normobaric hypoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
9.10%
发文量
296
审稿时长
2-4 weeks
期刊介绍: The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.
期刊最新文献
In vivo intracellular Ca2+ profiles after eccentric rat muscle contractions: Addressing the mechanistic bases for repeated bout protection. Validation of livability environmental limits to heat and humidity. Influence of natural hyoid bone position and surgical repositioning on upper airway patency: A computational finite element modeling study. Lower Maximal Skin Wettedness in Both Warm-Humid and Hot-Dry Environments with Advanced Age (PSU HEAT Project). Marked hemoglobin mass expansion and plasma volume contraction in Sherpas acclimatizing to 5,400 m altitude.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1