长期受压的蜜蜂蜂群在受到扰动后分工分布的变化。

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2024-11-01 Epub Date: 2024-11-08 DOI:10.1242/jeb.247976
Zeynep N Ulgezen, Coby van Dooremalen, Frank van Langevelde
{"title":"长期受压的蜜蜂蜂群在受到扰动后分工分布的变化。","authors":"Zeynep N Ulgezen, Coby van Dooremalen, Frank van Langevelde","doi":"10.1242/jeb.247976","DOIUrl":null,"url":null,"abstract":"<p><p>Division of labour (DOL) in eusocial insects plays an important role in colony fitness. Honeybees face a variety of stressors that compromise the homeostasis of the colony and reduce survival and reproduction. Considering the significance of DOL in colony homeostasis, it is important to understand whether and how DOL may be altered as a result of chronic stress. Therefore, we tested whether honeybee colonies shift DOL in response to high infestation with the parasitic mite Varroa destructor. For this, we monitored chronically stressed and presumably low-stress colonies from April till December 2022. During the experiment, we applied a cold shock to test whether a perturbation resulted in a larger alteration in DOL in chronically stressed colonies. We found that after cold shock, there was a lower proportion of nurses in the chronically stressed colonies. For foragers, we found higher activity post-cold shock in chronically stressed colonies, but no difference between treatments in nectar inflow, suggesting less efficient foragers. Furthermore, we found that there was an accelerated task switch in chronically stressed colonies after the cold shock. The large changes after the perturbation may indicate inefficient task allocation due to chronic stress. Our study contributes to the understanding of social resilience and chronic stress responses in eusocial animals.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shift in distribution of division of labour in chronically stressed honeybee colonies after perturbation.\",\"authors\":\"Zeynep N Ulgezen, Coby van Dooremalen, Frank van Langevelde\",\"doi\":\"10.1242/jeb.247976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Division of labour (DOL) in eusocial insects plays an important role in colony fitness. Honeybees face a variety of stressors that compromise the homeostasis of the colony and reduce survival and reproduction. Considering the significance of DOL in colony homeostasis, it is important to understand whether and how DOL may be altered as a result of chronic stress. Therefore, we tested whether honeybee colonies shift DOL in response to high infestation with the parasitic mite Varroa destructor. For this, we monitored chronically stressed and presumably low-stress colonies from April till December 2022. During the experiment, we applied a cold shock to test whether a perturbation resulted in a larger alteration in DOL in chronically stressed colonies. We found that after cold shock, there was a lower proportion of nurses in the chronically stressed colonies. For foragers, we found higher activity post-cold shock in chronically stressed colonies, but no difference between treatments in nectar inflow, suggesting less efficient foragers. Furthermore, we found that there was an accelerated task switch in chronically stressed colonies after the cold shock. The large changes after the perturbation may indicate inefficient task allocation due to chronic stress. Our study contributes to the understanding of social resilience and chronic stress responses in eusocial animals.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.247976\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247976","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

群居昆虫的分工(DOL)对蜂群的适应性起着重要作用。蜜蜂面临着各种压力,这些压力会破坏蜂群的平衡,降低存活率和繁殖率。考虑到 DOL 在蜂群平衡中的重要作用,了解 DOL 是否以及如何因慢性应激而发生改变就显得尤为重要。因此,我们测试了蜜蜂群落是否会因寄生螨Varroa destructor的高度侵扰而改变DOL。为此,我们从 2022 年 4 月到 12 月对长期受压和假定受压较低的蜂群进行了监测。实验期间,我们对蜂群进行了冷冲击,以测试干扰是否会导致长期受压蜂群的 DOL 发生较大变化。我们发现,冷休克后,长期受压群落中的哺乳动物比例降低。对于觅食者来说,我们发现长期受压的蜂群在冷休克后活动更频繁,但不同处理的花蜜流入量没有差异,这表明觅食者的效率较低。此外,我们还发现,在冷冲击后,长期受压的蜂群会加速任务转换。扰动后的巨大变化可能表明长期应激导致任务分配效率低下。我们的研究有助于人们了解易群居动物的社会适应能力和慢性应激反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shift in distribution of division of labour in chronically stressed honeybee colonies after perturbation.

Division of labour (DOL) in eusocial insects plays an important role in colony fitness. Honeybees face a variety of stressors that compromise the homeostasis of the colony and reduce survival and reproduction. Considering the significance of DOL in colony homeostasis, it is important to understand whether and how DOL may be altered as a result of chronic stress. Therefore, we tested whether honeybee colonies shift DOL in response to high infestation with the parasitic mite Varroa destructor. For this, we monitored chronically stressed and presumably low-stress colonies from April till December 2022. During the experiment, we applied a cold shock to test whether a perturbation resulted in a larger alteration in DOL in chronically stressed colonies. We found that after cold shock, there was a lower proportion of nurses in the chronically stressed colonies. For foragers, we found higher activity post-cold shock in chronically stressed colonies, but no difference between treatments in nectar inflow, suggesting less efficient foragers. Furthermore, we found that there was an accelerated task switch in chronically stressed colonies after the cold shock. The large changes after the perturbation may indicate inefficient task allocation due to chronic stress. Our study contributes to the understanding of social resilience and chronic stress responses in eusocial animals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
How do fish miss? Attack strategies of threespine stickleback capturing non-evasive prey. Hypertonic water reabsorption with a parallel-current system via the glandular and saccular renal tubules of Ruditapes philippinarum. Skittering locomotion in cricket frogs: a form of porpoising. Investigating in vivo force and work production of rat medial gastrocnemius at varying locomotor speeds using a muscle avatar. Bridging the divide in organismal physiology: a case for the integration of behaviour as a physiological process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1