Jing Li, Ye Li, Junqi Zhang, Beiyu Wang, Kangkang Huang, Hao Liu, Xin Rong
{"title":"使用 Prestige LP、Prodisc-C vivo 和 Mobi-C 进行人工颈椎间盘置换术 (ACDR) 后,面肌腱对指数水平运动学和生物力学影响的比较研究:有限元研究。","authors":"Jing Li, Ye Li, Junqi Zhang, Beiyu Wang, Kangkang Huang, Hao Liu, Xin Rong","doi":"10.1186/s13018-024-05218-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Artificial cervical disc replacement (ACDR) is a widely accepted surgical procedure in the treatment of cervical radiculopathy and myelopathy. However, some research suggests that ACDR may redistribute more load onto the facet joints, potentially leading to postoperative axial pain in certain patients. Earlier studies have indicated that facet tropism is prevalent in the lower cervical spine and can significantly increase facet joint pressure. The present study aims to investigate the changes in the biomechanical environment of the cervical spine after ACDR using different prosthese when facet tropism is present.</p><p><strong>Methods: </strong>A C2-C7 cervical spine finite element model was created. Symmetrical, moderate asymmetrical (7 degrees tropism), and severe asymmetrical (14 degrees tropism) models were created at the C5/C6 level by adjusting the left-side facet. C5/C6 ACDR with Prestige LP, Prodisc-C vivo, and Mobi-C were simulated in all models. A 75 N follower load and 1 N⋅m moment was applied to initiate flexion, extension, lateral bending, and axial rotation, and the range of motions (ROMs), facet contact forces(FCFs), and facet capsule stress were recorded.</p><p><strong>Results: </strong>In the presence of facet tropism, all ACDR models exhibited significantly higher FCFs and facet capsule stress compared to the intact model. In the asymmetric model, FCFs on the right side were significantly increased in neutral position, extension, left bending and right rotation, and on both sides in right bending and left rotation compared to the symmetric model. All ACDR model in the presence of facet tropism, exhibited significantly higher facet capsule stresses at all positions compared to the symmetric model. The stress distribution on the facet surface and the capsule ligament in the asymmetrical models was different from that in the symmetrical model.</p><p><strong>Conclusions: </strong>The existence of facet tropism could considerably increase FCFs and facet capsule stress after ACDR with Prestige-LP, Prodisc-C Vivo, and Mobi-C. None of the three different designs of implants were able to effectively protect the facet joints in the presence of facet tropism. Research into designing new implants may be needed to improve this situation. Clinical trials are needed to validate the impact of facet tropism.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"19 1","pages":"705"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524021/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparative study of the effect of facet tropism on the index-level kinematics and biomechanics after artificial cervical disc replacement (ACDR) with Prestige LP, Prodisc-C vivo, and Mobi-C: a finite element study.\",\"authors\":\"Jing Li, Ye Li, Junqi Zhang, Beiyu Wang, Kangkang Huang, Hao Liu, Xin Rong\",\"doi\":\"10.1186/s13018-024-05218-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Artificial cervical disc replacement (ACDR) is a widely accepted surgical procedure in the treatment of cervical radiculopathy and myelopathy. However, some research suggests that ACDR may redistribute more load onto the facet joints, potentially leading to postoperative axial pain in certain patients. Earlier studies have indicated that facet tropism is prevalent in the lower cervical spine and can significantly increase facet joint pressure. The present study aims to investigate the changes in the biomechanical environment of the cervical spine after ACDR using different prosthese when facet tropism is present.</p><p><strong>Methods: </strong>A C2-C7 cervical spine finite element model was created. Symmetrical, moderate asymmetrical (7 degrees tropism), and severe asymmetrical (14 degrees tropism) models were created at the C5/C6 level by adjusting the left-side facet. C5/C6 ACDR with Prestige LP, Prodisc-C vivo, and Mobi-C were simulated in all models. A 75 N follower load and 1 N⋅m moment was applied to initiate flexion, extension, lateral bending, and axial rotation, and the range of motions (ROMs), facet contact forces(FCFs), and facet capsule stress were recorded.</p><p><strong>Results: </strong>In the presence of facet tropism, all ACDR models exhibited significantly higher FCFs and facet capsule stress compared to the intact model. In the asymmetric model, FCFs on the right side were significantly increased in neutral position, extension, left bending and right rotation, and on both sides in right bending and left rotation compared to the symmetric model. All ACDR model in the presence of facet tropism, exhibited significantly higher facet capsule stresses at all positions compared to the symmetric model. The stress distribution on the facet surface and the capsule ligament in the asymmetrical models was different from that in the symmetrical model.</p><p><strong>Conclusions: </strong>The existence of facet tropism could considerably increase FCFs and facet capsule stress after ACDR with Prestige-LP, Prodisc-C Vivo, and Mobi-C. None of the three different designs of implants were able to effectively protect the facet joints in the presence of facet tropism. Research into designing new implants may be needed to improve this situation. Clinical trials are needed to validate the impact of facet tropism.</p>\",\"PeriodicalId\":16629,\"journal\":{\"name\":\"Journal of Orthopaedic Surgery and Research\",\"volume\":\"19 1\",\"pages\":\"705\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524021/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Surgery and Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13018-024-05218-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-024-05218-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
A comparative study of the effect of facet tropism on the index-level kinematics and biomechanics after artificial cervical disc replacement (ACDR) with Prestige LP, Prodisc-C vivo, and Mobi-C: a finite element study.
Introduction: Artificial cervical disc replacement (ACDR) is a widely accepted surgical procedure in the treatment of cervical radiculopathy and myelopathy. However, some research suggests that ACDR may redistribute more load onto the facet joints, potentially leading to postoperative axial pain in certain patients. Earlier studies have indicated that facet tropism is prevalent in the lower cervical spine and can significantly increase facet joint pressure. The present study aims to investigate the changes in the biomechanical environment of the cervical spine after ACDR using different prosthese when facet tropism is present.
Methods: A C2-C7 cervical spine finite element model was created. Symmetrical, moderate asymmetrical (7 degrees tropism), and severe asymmetrical (14 degrees tropism) models were created at the C5/C6 level by adjusting the left-side facet. C5/C6 ACDR with Prestige LP, Prodisc-C vivo, and Mobi-C were simulated in all models. A 75 N follower load and 1 N⋅m moment was applied to initiate flexion, extension, lateral bending, and axial rotation, and the range of motions (ROMs), facet contact forces(FCFs), and facet capsule stress were recorded.
Results: In the presence of facet tropism, all ACDR models exhibited significantly higher FCFs and facet capsule stress compared to the intact model. In the asymmetric model, FCFs on the right side were significantly increased in neutral position, extension, left bending and right rotation, and on both sides in right bending and left rotation compared to the symmetric model. All ACDR model in the presence of facet tropism, exhibited significantly higher facet capsule stresses at all positions compared to the symmetric model. The stress distribution on the facet surface and the capsule ligament in the asymmetrical models was different from that in the symmetrical model.
Conclusions: The existence of facet tropism could considerably increase FCFs and facet capsule stress after ACDR with Prestige-LP, Prodisc-C Vivo, and Mobi-C. None of the three different designs of implants were able to effectively protect the facet joints in the presence of facet tropism. Research into designing new implants may be needed to improve this situation. Clinical trials are needed to validate the impact of facet tropism.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.