Anil Pant, Djamal Brahim Belhaouari, Lara Dsouza, Zhilong Yang
{"title":"在疫苗病毒感染过程中,通过病毒生长因子信号和 ATP 柠檬酸溶解酶刺激中性脂质合成。","authors":"Anil Pant, Djamal Brahim Belhaouari, Lara Dsouza, Zhilong Yang","doi":"10.1128/jvi.01103-24","DOIUrl":null,"url":null,"abstract":"<p><p>Fatty acid metabolism can provide various products essential for viral infections. How vaccinia virus (VACV), the prototype of poxviruses, modulates fatty acid metabolism is not well understood. Here, we show that VACV infection results in increased neutral lipid droplet synthesis, the organelles that play a crucial role in storing and mobilizing fatty acids for energy production via β-oxidation. Citrate is the first tricarboxylic acid (TCA) cycle intermediate that can be transported to the cytosol to be converted to acetyl-CoA for <i>de novo</i> fatty acid biosynthesis. We found that VACV infection stimulates the S455 phosphorylation of ATP citrate lyase (ACLY), a pivotal enzyme that links citrate metabolism with lipid metabolism. We demonstrate that the inhibition of neutral lipid droplet synthesis and ACLY severely suppresses VACV replication. Remarkably, we found that virus growth factor (VGF)-induced signaling is essential for the VACV-mediated upregulation of ACLY phosphorylation and neutral lipid droplets. Finally, we report that VGF-induced EGFR-Akt pathway and ACLY phosphorylation are important for VACV stimulation of neutral lipid synthesis. These findings identified a new way of rewiring cell metabolism by a virus and a novel function for VGF in the governance of virus-host interactions through the induction of a key enzyme at the crossroads of the TCA cycle and fatty acid metabolism. Our study also provides a mechanism for the role played by VGF and its downstream signaling cascades in the modulation of lipid metabolism in VACV-infected cells.IMPORTANCENeutral lipid droplets are vital players in cellular metabolism. Here, we showed that VACV induces neutral lipid droplet synthesis in infected primary human foreskin fibroblasts and identified the cellular and viral factors needed. We identified VACV encoded growth factor (VGF) as an essential viral factor that induces cellular EGFR-Akt signaling to increase lipid droplets. Interestingly, VACV increases the S455 phosphorylation of ACLY, a key metabolic enzyme that sits at the crossroads of carbohydrate and lipid metabolism in a VGF-EGFR-Akt-dependent manner. We also found that ACLY is vital for VACV-induced lipid droplet synthesis. Our findings identified the modulation of ACLY by a virus and identified it as a potential target for antiviral development against pathogenic poxviruses. Our study also expands the role of growth factor signaling in boosting VACV replication by targeting fatty acid metabolism.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0110324"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578090/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stimulation of neutral lipid synthesis via viral growth factor signaling and ATP citrate lyase during vaccinia virus infection.\",\"authors\":\"Anil Pant, Djamal Brahim Belhaouari, Lara Dsouza, Zhilong Yang\",\"doi\":\"10.1128/jvi.01103-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fatty acid metabolism can provide various products essential for viral infections. How vaccinia virus (VACV), the prototype of poxviruses, modulates fatty acid metabolism is not well understood. Here, we show that VACV infection results in increased neutral lipid droplet synthesis, the organelles that play a crucial role in storing and mobilizing fatty acids for energy production via β-oxidation. Citrate is the first tricarboxylic acid (TCA) cycle intermediate that can be transported to the cytosol to be converted to acetyl-CoA for <i>de novo</i> fatty acid biosynthesis. We found that VACV infection stimulates the S455 phosphorylation of ATP citrate lyase (ACLY), a pivotal enzyme that links citrate metabolism with lipid metabolism. We demonstrate that the inhibition of neutral lipid droplet synthesis and ACLY severely suppresses VACV replication. Remarkably, we found that virus growth factor (VGF)-induced signaling is essential for the VACV-mediated upregulation of ACLY phosphorylation and neutral lipid droplets. Finally, we report that VGF-induced EGFR-Akt pathway and ACLY phosphorylation are important for VACV stimulation of neutral lipid synthesis. These findings identified a new way of rewiring cell metabolism by a virus and a novel function for VGF in the governance of virus-host interactions through the induction of a key enzyme at the crossroads of the TCA cycle and fatty acid metabolism. Our study also provides a mechanism for the role played by VGF and its downstream signaling cascades in the modulation of lipid metabolism in VACV-infected cells.IMPORTANCENeutral lipid droplets are vital players in cellular metabolism. Here, we showed that VACV induces neutral lipid droplet synthesis in infected primary human foreskin fibroblasts and identified the cellular and viral factors needed. We identified VACV encoded growth factor (VGF) as an essential viral factor that induces cellular EGFR-Akt signaling to increase lipid droplets. Interestingly, VACV increases the S455 phosphorylation of ACLY, a key metabolic enzyme that sits at the crossroads of carbohydrate and lipid metabolism in a VGF-EGFR-Akt-dependent manner. We also found that ACLY is vital for VACV-induced lipid droplet synthesis. Our findings identified the modulation of ACLY by a virus and identified it as a potential target for antiviral development against pathogenic poxviruses. Our study also expands the role of growth factor signaling in boosting VACV replication by targeting fatty acid metabolism.</p>\",\"PeriodicalId\":17583,\"journal\":{\"name\":\"Journal of Virology\",\"volume\":\" \",\"pages\":\"e0110324\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578090/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jvi.01103-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01103-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Stimulation of neutral lipid synthesis via viral growth factor signaling and ATP citrate lyase during vaccinia virus infection.
Fatty acid metabolism can provide various products essential for viral infections. How vaccinia virus (VACV), the prototype of poxviruses, modulates fatty acid metabolism is not well understood. Here, we show that VACV infection results in increased neutral lipid droplet synthesis, the organelles that play a crucial role in storing and mobilizing fatty acids for energy production via β-oxidation. Citrate is the first tricarboxylic acid (TCA) cycle intermediate that can be transported to the cytosol to be converted to acetyl-CoA for de novo fatty acid biosynthesis. We found that VACV infection stimulates the S455 phosphorylation of ATP citrate lyase (ACLY), a pivotal enzyme that links citrate metabolism with lipid metabolism. We demonstrate that the inhibition of neutral lipid droplet synthesis and ACLY severely suppresses VACV replication. Remarkably, we found that virus growth factor (VGF)-induced signaling is essential for the VACV-mediated upregulation of ACLY phosphorylation and neutral lipid droplets. Finally, we report that VGF-induced EGFR-Akt pathway and ACLY phosphorylation are important for VACV stimulation of neutral lipid synthesis. These findings identified a new way of rewiring cell metabolism by a virus and a novel function for VGF in the governance of virus-host interactions through the induction of a key enzyme at the crossroads of the TCA cycle and fatty acid metabolism. Our study also provides a mechanism for the role played by VGF and its downstream signaling cascades in the modulation of lipid metabolism in VACV-infected cells.IMPORTANCENeutral lipid droplets are vital players in cellular metabolism. Here, we showed that VACV induces neutral lipid droplet synthesis in infected primary human foreskin fibroblasts and identified the cellular and viral factors needed. We identified VACV encoded growth factor (VGF) as an essential viral factor that induces cellular EGFR-Akt signaling to increase lipid droplets. Interestingly, VACV increases the S455 phosphorylation of ACLY, a key metabolic enzyme that sits at the crossroads of carbohydrate and lipid metabolism in a VGF-EGFR-Akt-dependent manner. We also found that ACLY is vital for VACV-induced lipid droplet synthesis. Our findings identified the modulation of ACLY by a virus and identified it as a potential target for antiviral development against pathogenic poxviruses. Our study also expands the role of growth factor signaling in boosting VACV replication by targeting fatty acid metabolism.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.