Milagros Amichetti, Bruno A Franco, María Marta Zanardi, Ariel M Sarotti
{"title":"柔性和极性分子核磁共振计算中熵贡献的吉布斯效应(To Gibbs or Not to Gibbs Effect of Entropic Contribution in the NMR Calculations of Flexible and Polar Molecules)-更新 DP4+App.","authors":"Milagros Amichetti, Bruno A Franco, María Marta Zanardi, Ariel M Sarotti","doi":"10.1002/mrc.5491","DOIUrl":null,"url":null,"abstract":"<p><p>The application of quantum-based NMR methods for the structural elucidation of natural and unnatural products has grown significantly. However, accurately calculating the conformational landscape of flexible molecules with intricate intramolecular hydrogen bonding (IHB) networks continues to be a major challenge. In this work, we thoroughly studied the effect of entropic contributions (trough Gibbs free energies calculations) in the DP4+ performance. Our results show that to solve biased systems with strong IHB interactions requires computing the Boltzmann contributions using Gibbs free energies computed with at least triple-ξ basis set and SMD solvation model. In response to this finding, we have updated our DP4+App, a user-friendly Python applet that automates the entire process of calculating DP4+ probabilities. In the new version, the program allows for calculating of conformational contributions at any selected theory level, using either SCF or Gibbs free energies.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To Gibbs or Not to Gibbs Effect of Entropic Contribution in the NMR Calculations of Flexible and Polar Molecules-Updating the DP4+App.\",\"authors\":\"Milagros Amichetti, Bruno A Franco, María Marta Zanardi, Ariel M Sarotti\",\"doi\":\"10.1002/mrc.5491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of quantum-based NMR methods for the structural elucidation of natural and unnatural products has grown significantly. However, accurately calculating the conformational landscape of flexible molecules with intricate intramolecular hydrogen bonding (IHB) networks continues to be a major challenge. In this work, we thoroughly studied the effect of entropic contributions (trough Gibbs free energies calculations) in the DP4+ performance. Our results show that to solve biased systems with strong IHB interactions requires computing the Boltzmann contributions using Gibbs free energies computed with at least triple-ξ basis set and SMD solvation model. In response to this finding, we have updated our DP4+App, a user-friendly Python applet that automates the entire process of calculating DP4+ probabilities. In the new version, the program allows for calculating of conformational contributions at any selected theory level, using either SCF or Gibbs free energies.</p>\",\"PeriodicalId\":18142,\"journal\":{\"name\":\"Magnetic Resonance in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/mrc.5491\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mrc.5491","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
To Gibbs or Not to Gibbs Effect of Entropic Contribution in the NMR Calculations of Flexible and Polar Molecules-Updating the DP4+App.
The application of quantum-based NMR methods for the structural elucidation of natural and unnatural products has grown significantly. However, accurately calculating the conformational landscape of flexible molecules with intricate intramolecular hydrogen bonding (IHB) networks continues to be a major challenge. In this work, we thoroughly studied the effect of entropic contributions (trough Gibbs free energies calculations) in the DP4+ performance. Our results show that to solve biased systems with strong IHB interactions requires computing the Boltzmann contributions using Gibbs free energies computed with at least triple-ξ basis set and SMD solvation model. In response to this finding, we have updated our DP4+App, a user-friendly Python applet that automates the entire process of calculating DP4+ probabilities. In the new version, the program allows for calculating of conformational contributions at any selected theory level, using either SCF or Gibbs free energies.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.