利用钌纳米反应器对缺氧性骨肉瘤进行肿瘤靶向谷胱甘肽氧化催化。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-31 DOI:10.1038/s41467-024-53646-y
Hanchen Zhang, Nicolás Montesdeoca, Dongsheng Tang, Ganghao Liang, Minhui Cui, Chun Xu, Lisa-Marie Servos, Tiejun Bing, Zisis Papadopoulos, Meifang Shen, Haihua Xiao, Yingjie Yu, Johannes Karges
{"title":"利用钌纳米反应器对缺氧性骨肉瘤进行肿瘤靶向谷胱甘肽氧化催化。","authors":"Hanchen Zhang, Nicolás Montesdeoca, Dongsheng Tang, Ganghao Liang, Minhui Cui, Chun Xu, Lisa-Marie Servos, Tiejun Bing, Zisis Papadopoulos, Meifang Shen, Haihua Xiao, Yingjie Yu, Johannes Karges","doi":"10.1038/s41467-024-53646-y","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of anticancer agents have a reduced or even complete loss of a therapeutic effect within hypoxic tumors. To overcome this limitation, research efforts have been devoted to the development of therapeutic agents with biological mechanisms of action that are independent of the oxygen concentration. Here we show the design, synthesis, and biological evaluation of the incorporation of a ruthenium (Ru) catalyst into polymeric nanoreactors for hypoxic anticancer therapy. The nanoreactors can catalyze the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) in hypoxic cancer cells. This initiates the buildup of reactive oxygen species (ROS) and lipid peroxides, leading to the demise of cancer cells. It also stimulates the overexpression of the transient receptor potential melastatin 2 (TRPM2) ion channels, triggering macrophage activation, leading to a systemic immune response. Upon intravenous injection, the nanoreactors can systemically activate the immune system, and nearly fully eradicate an aggressive osteosarcoma tumor inside a mouse model.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"9405"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526146/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor-targeted glutathione oxidation catalysis with ruthenium nanoreactors against hypoxic osteosarcoma.\",\"authors\":\"Hanchen Zhang, Nicolás Montesdeoca, Dongsheng Tang, Ganghao Liang, Minhui Cui, Chun Xu, Lisa-Marie Servos, Tiejun Bing, Zisis Papadopoulos, Meifang Shen, Haihua Xiao, Yingjie Yu, Johannes Karges\",\"doi\":\"10.1038/s41467-024-53646-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The majority of anticancer agents have a reduced or even complete loss of a therapeutic effect within hypoxic tumors. To overcome this limitation, research efforts have been devoted to the development of therapeutic agents with biological mechanisms of action that are independent of the oxygen concentration. Here we show the design, synthesis, and biological evaluation of the incorporation of a ruthenium (Ru) catalyst into polymeric nanoreactors for hypoxic anticancer therapy. The nanoreactors can catalyze the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) in hypoxic cancer cells. This initiates the buildup of reactive oxygen species (ROS) and lipid peroxides, leading to the demise of cancer cells. It also stimulates the overexpression of the transient receptor potential melastatin 2 (TRPM2) ion channels, triggering macrophage activation, leading to a systemic immune response. Upon intravenous injection, the nanoreactors can systemically activate the immune system, and nearly fully eradicate an aggressive osteosarcoma tumor inside a mouse model.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"9405\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53646-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53646-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大多数抗癌药物在缺氧肿瘤中的治疗效果都会减弱,甚至完全丧失。为了克服这一限制,研究人员一直致力于开发具有独立于氧气浓度的生物作用机制的治疗药物。在这里,我们展示了将钌(Ru)催化剂加入聚合物纳米反应器用于缺氧抗癌治疗的设计、合成和生物学评估。这种纳米反应器能催化缺氧癌细胞中的谷胱甘肽(GSH)氧化为二硫化谷胱甘肽(GSSG)。这将引发活性氧(ROS)和脂质过氧化物的积累,导致癌细胞死亡。它还能刺激瞬时受体电位美拉辛 2(TRPM2)离子通道的过度表达,引发巨噬细胞活化,导致全身性免疫反应。经静脉注射后,纳米反应器可系统激活免疫系统,并几乎完全根除小鼠模型中的侵袭性骨肉瘤肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tumor-targeted glutathione oxidation catalysis with ruthenium nanoreactors against hypoxic osteosarcoma.

The majority of anticancer agents have a reduced or even complete loss of a therapeutic effect within hypoxic tumors. To overcome this limitation, research efforts have been devoted to the development of therapeutic agents with biological mechanisms of action that are independent of the oxygen concentration. Here we show the design, synthesis, and biological evaluation of the incorporation of a ruthenium (Ru) catalyst into polymeric nanoreactors for hypoxic anticancer therapy. The nanoreactors can catalyze the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) in hypoxic cancer cells. This initiates the buildup of reactive oxygen species (ROS) and lipid peroxides, leading to the demise of cancer cells. It also stimulates the overexpression of the transient receptor potential melastatin 2 (TRPM2) ion channels, triggering macrophage activation, leading to a systemic immune response. Upon intravenous injection, the nanoreactors can systemically activate the immune system, and nearly fully eradicate an aggressive osteosarcoma tumor inside a mouse model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Mapping the relative accuracy of cross-ancestry prediction PET-CT outcomes from a randomised controlled trial of rosuvastatin as an adjunct to standard tuberculosis treatment SurVIndel2: improving copy number variant calling from next-generation sequencing using hidden split reads Image-guided optogenetic spatiotemporal tissue patterning using μPatternScope Seismic risk mitigation at Campi Flegrei in volcanic unrest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1