José Héctor Gibrán Fritz García, Claudia Isabelle Keller Valsecchi, M Felicia Basilicata
{"title":"性别作为老化过程中的一个生物变量:对分子和细胞特征的认识和展望。","authors":"José Héctor Gibrán Fritz García, Claudia Isabelle Keller Valsecchi, M Felicia Basilicata","doi":"10.1098/rsob.240177","DOIUrl":null,"url":null,"abstract":"<p><p>Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 10","pages":"240177"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521605/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sex as a biological variable in ageing: insights and perspectives on the molecular and cellular hallmarks.\",\"authors\":\"José Héctor Gibrán Fritz García, Claudia Isabelle Keller Valsecchi, M Felicia Basilicata\",\"doi\":\"10.1098/rsob.240177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"14 10\",\"pages\":\"240177\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521605/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.240177\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240177","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
不同物种的寿命和衰老存在性别差异。在人类中,与男性相比,女性一般寿命更长,但更虚弱,并患有不同的老年相关疾病。衰老的特征,如基因组不稳定性、端粒损耗或蛋白稳态丧失,都表现出性别特异性模式。性染色体和性激素以及非活性 X 染色体的表观遗传调控已被证明会影响寿命和与年龄相关的疾病。在此,我们回顾了目前有关性别老化生物学基础的知识。虽然我们的综述侧重于人类,但也讨论了小鼠、果蝇或鳉鱼等模式生物的例子。预计到 2050 年,全球老年人口将翻一番,因此了解这些分子差异至关重要,这使得在诊断、治疗、治疗方法开发和预防老年相关疾病方面迫切需要有性别特异性的方法。
Sex as a biological variable in ageing: insights and perspectives on the molecular and cellular hallmarks.
Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.